Select the correct option. Find the exact value of \( \cos \frac{13 \pi}{6}+\cos \frac{7 \pi}{6} \), \( \begin{array}{l}0 \\ -\frac{\sqrt{3}}{2} \\ 0\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To find \( \cos \frac{13 \pi}{6} + \cos \frac{7 \pi}{6} \), we first find the cosine values of the individual angles. The angle \( \frac{13 \pi}{6} \) is equivalent to \( \frac{13 \pi}{6} - 2\pi = \frac{13 \pi}{6} - \frac{12 \pi}{6} = \frac{\pi}{6} \). Thus, \( \cos \frac{13 \pi}{6} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \). Next, for \( \frac{7 \pi}{6} \), this angle is in the third quadrant where cosine values are negative. Specifically, \( \cos \frac{7 \pi}{6} = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2} \). Now we sum these results: \[ \cos \frac{13 \pi}{6} + \cos \frac{7 \pi}{6} = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0. \] So the correct option is: \( 0 \)