Use implicit differentiation to find \( \frac{d y}{d x} \) \[ x^{3}+y^{3}=12 x y \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To find \(\frac{dy}{dx}\) using implicit differentiation, we differentiate both sides of the equation \(x^3 + y^3 = 12xy\) with respect to \(x\). Differentiating the left side: \[ \frac{d}{dx}(x^3) + \frac{d}{dx}(y^3) = 3x^2 + 3y^2\frac{dy}{dx} \] Differentiating the right side: \[ \frac{d}{dx}(12xy) = 12\left(x\frac{dy}{dx} + y\right) = 12y + 12x\frac{dy}{dx} \] Now we equate both sides: \[ 3x^2 + 3y^2\frac{dy}{dx} = 12y + 12x\frac{dy}{dx} \] Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ 3y^2\frac{dy}{dx} - 12x\frac{dy}{dx} = 12y - 3x^2 \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx}(3y^2 - 12x) = 12y - 3x^2 \] Finally, we solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{12y - 3x^2}{3y^2 - 12x} \]