Select the correct option. Rewrite \( 4 \sin ^{3} \theta \) in terms with no power greater than one. \( \begin{array}{l}2 \sin \theta-\sin \theta \cos 2 \theta \\ \text { (in } \theta-\sin \theta \cos 2 \theta \\ 2\end{array} 0 \frac{\sin \theta+\sin \theta-2 \sin \theta \cos 2 \theta}{2} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To rewrite \( 4 \sin ^{3} \theta \) in terms with no power greater than one, we can utilize the identity \( \sin^2 \theta = 1 - \cos^2 \theta \). Starting with \( \sin^3 \theta \), we can express it as \( \sin \theta (1 - \cos^2 \theta) \) and then multiply by 4: \[ 4 \sin^3 \theta = 4 \sin \theta (1 - \cos^2 \theta) = 4 \sin \theta - 4 \sin \theta \cos^2 \theta. \] Now, use the double angle identity \( \cos 2\theta = 2\cos^2 \theta - 1 \) which means \( \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \). Plugging that in gives: \[ 4 \sin^3 \theta = 4 \sin \theta - 4 \sin \theta \left(\frac{1 + \cos 2\theta}{2}\right) = 4 \sin \theta - 2 \sin \theta (1 + \cos 2\theta). \] Simplifying yields: \[ 4 \sin^3 \theta = 2 \sin \theta - 2 \sin \theta \cos 2\theta. \] Thus, the expression \( 4 \sin^3 \theta \) can be rewritten as: \[ 2 \sin \theta - 2 \sin \theta \cos 2\theta. \]