Evaluate the following integral or state that it diverges. \( \int_{0}^{\infty} \frac{16 \tan ^{-1} v}{1+v^{2}} d v \) Select the correct choice and, if necessary, fill in the answer box to complete your choice. A. The improper integral converges and \( \int_{0}^{\infty} \frac{16 \tan ^{-1} v}{1+v^{2}} d v=\square \). (Type an exact answer in terms of \( \pi \).)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To evaluate the integral \[ I = \int_{0}^{\infty} \frac{16 \tan^{-1} v}{1+v^{2}} \, dv, \] we can use integration by parts. We set \[ u = \tan^{-1} v \quad \text{and} \quad dv = \frac{16}{1+v^2} \, dv. \] Then, we have \[ du = \frac{1}{1+v^2} \, dv \quad \text{and} \quad v = \tan u \Rightarrow dv = \sec^2 u \, du. \] The integral can be rewritten in terms of \( u \): Substituting, we obtain: \[ I = 16 \int_{0}^{\frac{\pi}{2}} u \, du. \] Next, we compute: \[ \int u \, du = \frac{u^2}{2} \Big|_{0}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} - 0 = \frac{\pi^2}{8}. \] Thus, \[ I = 16 \cdot \frac{\pi^2}{8} = 2 \pi^2. \] Therefore, we find that the improper integral converges, and we have A. The improper integral converges and \( \int_{0}^{\infty} \frac{16 \tan^{-1} v}{1+v^{2}} \, dv = 2\pi^2 \).