Dado el campo vectorial \( \mathbf{F}(x, y, z)=\left(y^{2}+3 z\right) \mathbf{i}+(2 x+z) \mathbf{j}+\left(x^{2}-y\right) \mathbf{k} \) ¿cuál es el rotacional \( \nabla \times F \) ? \( \begin{array}{l}0(0) \mathbf{i}-(3) \mathbf{j}+(0) \mathbf{k} \\ 0-2 \mathbf{i}-(2 x-3) \mathbf{j}+(2-2 y) \mathbf{k} \\ 0-1 \mathbf{i}-(2 x-3) \mathbf{j}+(2-2 y) \mathbf{k}\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Para calcular el rotacional \( \nabla \times \mathbf{F} \) del campo vectorial \( \mathbf{F}(x, y, z)=(y^{2}+3 z) \mathbf{i}+(2 x+z) \mathbf{j}+\left(x^{2}-y\right) \mathbf{k} \), utilizamos la fórmula del rotacional en coordenadas cartesianas: \[ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2}+3z & 2x+z & x^{2}-y \end{vmatrix} \] Calculando el determinante, obtenemos: \[ \nabla \times \mathbf{F} = \left( \frac{\partial (x^{2}-y)}{\partial y} - \frac{\partial (2x+z)}{\partial z} \right) \mathbf{i} - \left( \frac{\partial (x^{2}-y)}{\partial x} - \frac{\partial (y^{2}+3z)}{\partial z} \right) \mathbf{j} + \left( \frac{\partial (2x+z)}{\partial x} - \frac{\partial (y^{2}+3z)}{\partial y} \right) \mathbf{k} \] Calculando cada término, conseguimos: 1. Primer componente: \( \frac{\partial (x^{2}-y)}{\partial y} = -1 \) y \( \frac{\partial (2x+z)}{\partial z} = 1 \), así que \( -1 - 1 = -2 \). 2. Segundo componente: \( \frac{\partial (x^{2}-y)}{\partial x} = 2x \) y \( \frac{\partial (y^{2}+3z)}{\partial z} = 3 \), así que \( 2x - 3 \). 3. Tercer componente: \( \frac{\partial (2x+z)}{\partial x} = 2 \) y \( \frac{\partial (y^{2}+3z)}{\partial y} = 2y \), así que \( 2 - 2y \). Por lo tanto, el rotacional es: \[ \nabla \times \mathbf{F} = -2 \mathbf{i} - (2x - 3) \mathbf{j} + (2 - 2y) \mathbf{k} \]