(b) If \( \sin 10^{\circ}=m \), write the following in terms of \( m \) : \( \begin{array}{lll}\text { (1) } \sin 350^{\circ} & \text { (2) } \sin \left(-10^{\circ}\right) & \text { (3) } \cos 260^{\circ} \\ \text { (4) } \cos 10^{\circ} & \text { (5) } \tan 170^{\circ} & \\ \text { (c) If } \cos 38^{\circ}=p \text {, write the following in terms of } p \text { : } \\ \text { (1) } \cos 322^{\circ} & \text { (2) } \sin 52^{\circ} & \text { (3) } \sin 232^{\circ} \\ \text { (4) } \tan 38^{\circ} & \text { (5) } \sin 142^{\circ} & \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
If \( \sin 10^{\circ} = m \), we can express the other trigonometric functions as follows: 1. \( \sin 350^{\circ} = \sin(360^{\circ} - 10^{\circ}) = \sin 10^{\circ} = m \) 2. \( \sin(-10^{\circ}) = -\sin 10^{\circ} = -m \) 3. \( \cos 260^{\circ} = \cos(270^{\circ} - 10^{\circ}) = -\sin 10^{\circ} = -m \) 4. \( \cos 10^{\circ} = \sqrt{1 - m^2} \) 5. \( \tan 170^{\circ} = -\tan(180^{\circ} - 10^{\circ}) = -\frac{\sin 10^{\circ}}{\cos 10^{\circ}} = -\frac{m}{\sqrt{1 - m^2}} \) For \( \cos 38^{\circ} = p \): 1. \( \cos 322^{\circ} = \cos(360^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \) 2. \( \sin 52^{\circ} = \sin(90^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \) 3. \( \sin 232^{\circ} = \sin(180^{\circ} + 52^{\circ}) = -\sin 52^{\circ} = -p \) 4. \( \tan 38^{\circ} = \frac{\sin 38^{\circ}}{\cos 38^{\circ}} = \frac{\sqrt{1 - p^2}}{p} \) 5. \( \sin 142^{\circ} = \sin(180^{\circ} - 38^{\circ}) = \sin 38^{\circ} = \sqrt{1 - p^2} \)
