A student pushes an \( M=15.6 \) kg shopping cart across the room by applying a \( \left|\vec{F}_{A}\right|=185 \mathrm{~N} \) force at an angle of \( \theta=37.0^{\circ} \) below the horizontal as shown in the figure. ( \( \mu=0.430 \) ) Find the magnitude of the weight \( \left|\vec{F}_{g}\right| \) of the cart. \( \left|\vec{F}_{g}\right|= \) Find the magnitude of the normal force \( \left|\vec{F}_{N}\right| \) on the cart. \( \left|\vec{F}_{N}\right|= \) Find the magnitude of the force of friction \( \left|\vec{F}_{f}\right| \) on the cart. \( \left|\vec{F}_{f}\right|=\square \) Find the magnitude of the acceleration \( |\vec{a}| \) of the cart. \( |\vec{a}|=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To find the different forces acting on the shopping cart, let's break down the problem step by step. 1. **Weight of the Cart** \( \left|\vec{F}_{g}\right| \): The weight can be calculated using the formula: \[ \left|\vec{F}_{g}\right| = M \cdot g \] where \( g \approx 9.81 \, \mathrm{m/s}^2 \) (acceleration due to gravity). Thus: \[ \left|\vec{F}_{g}\right| = 15.6 \, \mathrm{kg} \times 9.81 \, \mathrm{m/s}^2 \approx 153.0 \, \mathrm{N} \] 2. **Normal Force** \( \left|\vec{F}_{N}\right| \): The normal force can be found by considering the vertical forces. The vertical component of the applied force must be subtracted from the weight: \[ \left|\vec{F}_{N}\right| = \left|\vec{F}_{g}\right| - \left|\vec{F}_{A}\right| \sin(\theta) \] \[ = 153.0 \, \mathrm{N} - 185 \, \mathrm{N} \cdot \sin(37^\circ) \] Calculate \( \sin(37^\circ) \approx 0.6018 \): \[ = 153.0 \, \mathrm{N} - 185 \cdot 0.6018 \approx 153.0 \, \mathrm{N} - 111.34 \, \mathrm{N} \approx 41.66 \, \mathrm{N} \] 3. **Force of Friction** \( \left|\vec{F}_{f}\right| \): The force of friction can be calculated using the coefficient of friction \( \mu \): \[ \left|\vec{F}_{f}\right| = \mu \cdot \left|\vec{F}_{N}\right| \] \[ \left|\vec{F}_{f}\right| = 0.430 \cdot 41.66 \, \mathrm{N} \approx 17.92 \, \mathrm{N} \] 4. **Acceleration** \( |\vec{a}| \): First, find the net force in the horizontal direction (where friction acts): \[ F_{net} = \left|\vec{F}_{A}\right| \cos(\theta) - \left|\vec{F}_{f}\right| \] Calculate \( \cos(37^\circ) \approx 0.7986 \): \[ F_{net} = 185 \cdot 0.7986 - 17.92 \approx 147.61 \, \mathrm{N} - 17.92 \approx 129.69 \, \mathrm{N} \] Now use Newton's second law to find acceleration: \[ |\vec{a}| = \frac{F_{net}}{M} = \frac{129.69 \, \mathrm{N}}{15.6 \, \mathrm{kg}} \approx 8.29 \, \mathrm{m/s^2} \] ### Summary of Results: - \( \left|\vec{F}_{g}\right| = 153.0 \, \mathrm{N} \) - \( \left|\vec{F}_{N}\right| \approx 41.66 \, \mathrm{N} \) - \( \left|\vec{F}_{f}\right| \approx 17.92 \, \mathrm{N} \) - \( |\vec{a}| \approx 8.29 \, \mathrm{m/s^2} \)