Pregunta
upstudy study bank question image url

A student pushes an \( M=15.6 \) kg shopping cart across the room by applying a \( \left|\vec{F}_{A}\right|=185 \mathrm{~N} \) force at an angle of \( \theta=37.0^{\circ} \) below the horizontal as shown in the figure. ( \( \mu=0.430 \) ) Find the magnitude of the weight \( \left|\vec{F}_{g}\right| \) of the cart. \( \left|\vec{F}_{g}\right|= \) Find the magnitude of the normal force \( \left|\vec{F}_{N}\right| \) on the cart. \( \left|\vec{F}_{N}\right|= \) Find the magnitude of the force of friction \( \left|\vec{F}_{f}\right| \) on the cart. \( \left|\vec{F}_{f}\right|=\square \) Find the magnitude of the acceleration \( |\vec{a}| \) of the cart. \( |\vec{a}|=\square \)

Ask by Chen Patel. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The weight of the cart is approximately 153 N, the normal force is about 264 N, the frictional force is around 114 N, and the acceleration of the cart is approximately 2.18 m/s².

Solución

We are given:  Mass of cart, M = 15.6 kg  Applied force, |Fₐ| = 185 N (directed 37.0° below the horizontal)  Coefficient of kinetic friction, μ = 0.430  Acceleration due to gravity, g ≈ 9.80 m/s² (you may also use 9.81 m/s²) We wish to find: 1. The weight |F_g| of the cart 2. The normal force |F_N| on the cart 3. The frictional force |F_f| 4. The acceleration |a| of the cart ───────────────────────────── Step 1. Find the weight |F_g|: The weight is given by   |F_g| = M·g Plug in the numbers:   |F_g| = (15.6 kg)(9.80 m/s²) ≈ 152.88 N Rounded suitably, we have   |F_g| ≈ 153 N ───────────────────────────── Step 2. Find the normal force |F_N|: Because the applied force is directed downward at an angle below the horizontal, its vertical component adds to the weight. (Assuming the cart is not accelerating vertically, the sum of forces in the vertical direction must vanish.) Resolve the applied force into components:  Horizontal: Fₐₓ = |Fₐ| cosθ  Vertical (downward): Fₐ_y = |Fₐ| sinθ Since both weight and Fₐ_y act downward, the normal force from the floor must counter both. Thus,   N = |F_g| + |Fₐ| sinθ Now, using θ = 37.0°, note that:   sin 37.0° ≈ 0.6018 Then:   |Fₐ| sinθ = (185 N)(0.6018) ≈ 111.33 N Now compute N:   N = 152.88 N + 111.33 N ≈ 264.21 N Rounded,   |F_N| ≈ 264 N ───────────────────────────── Step 3. Find the frictional force |F_f|: Friction is given by   |F_f| = μ·N Plug in:   |F_f| = 0.430 × 264.21 N ≈ 113.66 N Rounded,   |F_f| ≈ 114 N ───────────────────────────── Step 4. Find the acceleration |a| of the cart: The net horizontal force is given by the horizontal component of the applied force minus the friction opposing the motion. First, resolve the applied force horizontally:   Fₐₓ = |Fₐ| cosθ Using cos 37.0° ≈ 0.7986, we have   Fₐₓ = (185 N)(0.7986) ≈ 147.68 N Now, net horizontal force:   F_net = Fₐₓ – |F_f|   F_net ≈ 147.68 N – 113.66 N ≈ 34.02 N Use Newton’s second law in the horizontal direction:   F_net = M·a ⟹ a = F_net / M Thus,   a = (34.02 N)/(15.6 kg) ≈ 2.18 m/s² ───────────────────────────── Final Answers: 1. The weight of the cart:  |F_g| ≈ 153 N 2. The normal force on the cart: |F_N| ≈ 264 N 3. The frictional force:    |F_f| ≈ 114 N 4. The acceleration of the cart: |a| ≈ 2.18 m/s² These results complete the solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the different forces acting on the shopping cart, let's break down the problem step by step. 1. **Weight of the Cart** \( \left|\vec{F}_{g}\right| \): The weight can be calculated using the formula: \[ \left|\vec{F}_{g}\right| = M \cdot g \] where \( g \approx 9.81 \, \mathrm{m/s}^2 \) (acceleration due to gravity). Thus: \[ \left|\vec{F}_{g}\right| = 15.6 \, \mathrm{kg} \times 9.81 \, \mathrm{m/s}^2 \approx 153.0 \, \mathrm{N} \] 2. **Normal Force** \( \left|\vec{F}_{N}\right| \): The normal force can be found by considering the vertical forces. The vertical component of the applied force must be subtracted from the weight: \[ \left|\vec{F}_{N}\right| = \left|\vec{F}_{g}\right| - \left|\vec{F}_{A}\right| \sin(\theta) \] \[ = 153.0 \, \mathrm{N} - 185 \, \mathrm{N} \cdot \sin(37^\circ) \] Calculate \( \sin(37^\circ) \approx 0.6018 \): \[ = 153.0 \, \mathrm{N} - 185 \cdot 0.6018 \approx 153.0 \, \mathrm{N} - 111.34 \, \mathrm{N} \approx 41.66 \, \mathrm{N} \] 3. **Force of Friction** \( \left|\vec{F}_{f}\right| \): The force of friction can be calculated using the coefficient of friction \( \mu \): \[ \left|\vec{F}_{f}\right| = \mu \cdot \left|\vec{F}_{N}\right| \] \[ \left|\vec{F}_{f}\right| = 0.430 \cdot 41.66 \, \mathrm{N} \approx 17.92 \, \mathrm{N} \] 4. **Acceleration** \( |\vec{a}| \): First, find the net force in the horizontal direction (where friction acts): \[ F_{net} = \left|\vec{F}_{A}\right| \cos(\theta) - \left|\vec{F}_{f}\right| \] Calculate \( \cos(37^\circ) \approx 0.7986 \): \[ F_{net} = 185 \cdot 0.7986 - 17.92 \approx 147.61 \, \mathrm{N} - 17.92 \approx 129.69 \, \mathrm{N} \] Now use Newton's second law to find acceleration: \[ |\vec{a}| = \frac{F_{net}}{M} = \frac{129.69 \, \mathrm{N}}{15.6 \, \mathrm{kg}} \approx 8.29 \, \mathrm{m/s^2} \] ### Summary of Results: - \( \left|\vec{F}_{g}\right| = 153.0 \, \mathrm{N} \) - \( \left|\vec{F}_{N}\right| \approx 41.66 \, \mathrm{N} \) - \( \left|\vec{F}_{f}\right| \approx 17.92 \, \mathrm{N} \) - \( |\vec{a}| \approx 8.29 \, \mathrm{m/s^2} \)

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad