Answer
- (a) The local maximum is at \( \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right) \).
- (b) The function is increasing on \( (-\infty, \frac{8}{3}] \) and decreasing on \( [\frac{8}{3}, 4] \).
Solution
Function by following steps:
- step0: Find the increasing or decreasing interval:
\(U\left(x\right)=x\sqrt{4-x}\)
- step1: Find the domain:
\(U\left(x\right)=x\sqrt{4-x},x\leq 4\)
- step2: Find the derivative:
\(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}}\)
- step3: Find the domain:
\(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}},x<4\)
- step4: Substitute \(U^{\prime}\left(x\right)=0:\)
\(0=\frac{8-3x}{2\sqrt{4-x}}\)
- step5: Swap the sides:
\(\frac{8-3x}{2\sqrt{4-x}}=0\)
- step6: Cross multiply:
\(8-3x=2\sqrt{4-x}\times 0\)
- step7: Simplify the equation:
\(8-3x=0\)
- step8: Move the constant to the right side:
\(-3x=0-8\)
- step9: Remove 0:
\(-3x=-8\)
- step10: Change the signs:
\(3x=8\)
- step11: Divide both sides:
\(\frac{3x}{3}=\frac{8}{3}\)
- step12: Divide the numbers:
\(x=\frac{8}{3}\)
- step13: Check if the solution is in the defined range:
\(x=\frac{8}{3},x<4\)
- step14: Find the intersection:
\(x=\frac{8}{3}\)
- step15: Determine the intervals:
\(\begin{align}&x\leq \frac{8}{3}\\&\frac{8}{3}\leq x\leq 4\end{align}\)
- step16: Choose the points:
\(\begin{align}&x_{1}=2\\&x_{2}=3\end{align}\)
- step17: Find the values of the derivatives:
\(\begin{align}&U^{\prime}\left(2\right)\approx 0.707107\\&U^{\prime}\left(3\right)=-\frac{1}{2}\end{align}\)
- step18: Calculate:
\(\begin{align}&x\leq \frac{8}{3}\textrm{ is increasing interval}\\&\frac{8}{3}\leq x\leq 4\textrm{ is decreasing interval}\end{align}\)
- step19: Evaluate:
\(\begin{align}&\textrm{The increasing interval is}\textrm{ }x\leq \frac{8}{3}\\&\textrm{The decreasing interval is}\textrm{ }\frac{8}{3}\leq x\leq 4\end{align}\)
Analyze the extrema of the function \( U(x)=x \sqrt{4-x} \)
Function by following steps:
- step0: Find the local extrema:
\(U\left(x\right)=x\sqrt{4-x}\)
- step1: Find the domain:
\(U\left(x\right)=x\sqrt{4-x},x\leq 4\)
- step2: Find the derivative:
\(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}}\)
- step3: Find the domain:
\(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}},x<4\)
- step4: Substitute \(U^{\prime}\left(x\right)=0:\)
\(0=\frac{8-3x}{2\sqrt{4-x}}\)
- step5: Swap the sides:
\(\frac{8-3x}{2\sqrt{4-x}}=0\)
- step6: Cross multiply:
\(8-3x=2\sqrt{4-x}\times 0\)
- step7: Simplify the equation:
\(8-3x=0\)
- step8: Move the constant to the right side:
\(-3x=0-8\)
- step9: Remove 0:
\(-3x=-8\)
- step10: Change the signs:
\(3x=8\)
- step11: Divide both sides:
\(\frac{3x}{3}=\frac{8}{3}\)
- step12: Divide the numbers:
\(x=\frac{8}{3}\)
- step13: Check if the solution is in the defined range:
\(x=\frac{8}{3},x<4\)
- step14: Find the intersection:
\(x=\frac{8}{3}\)
- step15: Determine the intervals:
\(\begin{align}&\left(-\infty,\frac{8}{3}\right),\left(\frac{8}{3},4\right]\end{align}\)
- step16: Choose the points:
\(x_{1}=2,x_{2}=3\)
- step17: Find the values of the derivatives:
\(U^{\prime}\left(2\right)\approx 0.707107,U^{\prime}\left(3\right)=-\frac{1}{2}\)
- step18: The local maximum is at \(x=\frac{8}{3}:\)
\(\begin{align}&U\left(x\right)=x\sqrt{4-x},x=\frac{8}{3}\end{align}\)
- step19: Calculate the function value:
\(U\left(\frac{8}{3} \right)=\frac{16\sqrt{3}}{9}\)
- step20: The local maximum of the function is \(\frac{16\sqrt{3}}{9}\) at \(x = \frac{8}{3}:\)
\(\begin{align}&\textrm{The local maximum is }\frac{16\sqrt{3}}{9}\textrm{ at }x = \frac{8}{3}\end{align}\)
Let's break down the solution step by step for the function \( U(x) = x \sqrt{4 - x} \).
### (a) Finding the Local Maximum Value
1. **Finding the Critical Points**:
To find the local maximum, we first need to determine the critical points by finding the derivative of \( U(x) \) and setting it to zero.
2. **Calculating the Local Maximum**:
The local maximum value of the function is given as \( \frac{16\sqrt{3}}{9} \) at \( x = \frac{8}{3} \).
Thus, the answer for part (a) is:
\[
(x, y) = \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right)
\]
### (b) Finding Intervals of Increase and Decrease
1. **Increasing Interval**:
The function is increasing for \( x \leq \frac{8}{3} \).
2. **Decreasing Interval**:
The function is decreasing for \( \frac{8}{3} \leq x \leq 4 \).
Thus, the answers for part (b) are:
- **Increasing**: \( (-\infty, \frac{8}{3}] \)
- **Decreasing**: \( [\frac{8}{3}, 4] \)
### Summary of Answers
- (a) \( (x, y) = \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right) \)
- (b) Increasing: \( (-\infty, \frac{8}{3}] \), Decreasing: \( [\frac{8}{3}, 4] \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution