Pregunta
upstudy study bank question image url

A graphing calculator is recommended. A function is given. \( \begin{array}{l}U(x)=x \sqrt{4-x} \\ \text { (a) Find the local maximum value of the function and the value of } x \text { at which this occurs. State the answer rounded to two } \\ \text { ( } x, y)=(\square\end{array} \) (b) Find the intervals on which the function is increasing and on which the function is decreasing. State each answer rounded to two decimal places. (Enter your answers using interval notation.) increasing decreasing

Ask by Goodwin Fernandez. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- (a) The local maximum is at \( \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right) \). - (b) The function is increasing on \( (-\infty, \frac{8}{3}] \) and decreasing on \( [\frac{8}{3}, 4] \).

Solución

Function by following steps: - step0: Find the increasing or decreasing interval: \(U\left(x\right)=x\sqrt{4-x}\) - step1: Find the domain: \(U\left(x\right)=x\sqrt{4-x},x\leq 4\) - step2: Find the derivative: \(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}}\) - step3: Find the domain: \(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}},x<4\) - step4: Substitute \(U^{\prime}\left(x\right)=0:\) \(0=\frac{8-3x}{2\sqrt{4-x}}\) - step5: Swap the sides: \(\frac{8-3x}{2\sqrt{4-x}}=0\) - step6: Cross multiply: \(8-3x=2\sqrt{4-x}\times 0\) - step7: Simplify the equation: \(8-3x=0\) - step8: Move the constant to the right side: \(-3x=0-8\) - step9: Remove 0: \(-3x=-8\) - step10: Change the signs: \(3x=8\) - step11: Divide both sides: \(\frac{3x}{3}=\frac{8}{3}\) - step12: Divide the numbers: \(x=\frac{8}{3}\) - step13: Check if the solution is in the defined range: \(x=\frac{8}{3},x<4\) - step14: Find the intersection: \(x=\frac{8}{3}\) - step15: Determine the intervals: \(\begin{align}&x\leq \frac{8}{3}\\&\frac{8}{3}\leq x\leq 4\end{align}\) - step16: Choose the points: \(\begin{align}&x_{1}=2\\&x_{2}=3\end{align}\) - step17: Find the values of the derivatives: \(\begin{align}&U^{\prime}\left(2\right)\approx 0.707107\\&U^{\prime}\left(3\right)=-\frac{1}{2}\end{align}\) - step18: Calculate: \(\begin{align}&x\leq \frac{8}{3}\textrm{ is increasing interval}\\&\frac{8}{3}\leq x\leq 4\textrm{ is decreasing interval}\end{align}\) - step19: Evaluate: \(\begin{align}&\textrm{The increasing interval is}\textrm{ }x\leq \frac{8}{3}\\&\textrm{The decreasing interval is}\textrm{ }\frac{8}{3}\leq x\leq 4\end{align}\) Analyze the extrema of the function \( U(x)=x \sqrt{4-x} \) Function by following steps: - step0: Find the local extrema: \(U\left(x\right)=x\sqrt{4-x}\) - step1: Find the domain: \(U\left(x\right)=x\sqrt{4-x},x\leq 4\) - step2: Find the derivative: \(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}}\) - step3: Find the domain: \(U^{\prime}\left(x\right)=\frac{8-3x}{2\sqrt{4-x}},x<4\) - step4: Substitute \(U^{\prime}\left(x\right)=0:\) \(0=\frac{8-3x}{2\sqrt{4-x}}\) - step5: Swap the sides: \(\frac{8-3x}{2\sqrt{4-x}}=0\) - step6: Cross multiply: \(8-3x=2\sqrt{4-x}\times 0\) - step7: Simplify the equation: \(8-3x=0\) - step8: Move the constant to the right side: \(-3x=0-8\) - step9: Remove 0: \(-3x=-8\) - step10: Change the signs: \(3x=8\) - step11: Divide both sides: \(\frac{3x}{3}=\frac{8}{3}\) - step12: Divide the numbers: \(x=\frac{8}{3}\) - step13: Check if the solution is in the defined range: \(x=\frac{8}{3},x<4\) - step14: Find the intersection: \(x=\frac{8}{3}\) - step15: Determine the intervals: \(\begin{align}&\left(-\infty,\frac{8}{3}\right),\left(\frac{8}{3},4\right]\end{align}\) - step16: Choose the points: \(x_{1}=2,x_{2}=3\) - step17: Find the values of the derivatives: \(U^{\prime}\left(2\right)\approx 0.707107,U^{\prime}\left(3\right)=-\frac{1}{2}\) - step18: The local maximum is at \(x=\frac{8}{3}:\) \(\begin{align}&U\left(x\right)=x\sqrt{4-x},x=\frac{8}{3}\end{align}\) - step19: Calculate the function value: \(U\left(\frac{8}{3} \right)=\frac{16\sqrt{3}}{9}\) - step20: The local maximum of the function is \(\frac{16\sqrt{3}}{9}\) at \(x = \frac{8}{3}:\) \(\begin{align}&\textrm{The local maximum is }\frac{16\sqrt{3}}{9}\textrm{ at }x = \frac{8}{3}\end{align}\) Let's break down the solution step by step for the function \( U(x) = x \sqrt{4 - x} \). ### (a) Finding the Local Maximum Value 1. **Finding the Critical Points**: To find the local maximum, we first need to determine the critical points by finding the derivative of \( U(x) \) and setting it to zero. 2. **Calculating the Local Maximum**: The local maximum value of the function is given as \( \frac{16\sqrt{3}}{9} \) at \( x = \frac{8}{3} \). Thus, the answer for part (a) is: \[ (x, y) = \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right) \] ### (b) Finding Intervals of Increase and Decrease 1. **Increasing Interval**: The function is increasing for \( x \leq \frac{8}{3} \). 2. **Decreasing Interval**: The function is decreasing for \( \frac{8}{3} \leq x \leq 4 \). Thus, the answers for part (b) are: - **Increasing**: \( (-\infty, \frac{8}{3}] \) - **Decreasing**: \( [\frac{8}{3}, 4] \) ### Summary of Answers - (a) \( (x, y) = \left(\frac{8}{3}, \frac{16\sqrt{3}}{9}\right) \) - (b) Increasing: \( (-\infty, \frac{8}{3}] \), Decreasing: \( [\frac{8}{3}, 4] \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the local maximum of the function \( U(x) = x \sqrt{4 - x} \), you'll want to start by finding the derivative \( U'(x) \) and setting it to zero. The derivative is found using the product and chain rules, leading to \( U'(x) = \sqrt{4-x} + \frac{-x}{2\sqrt{4-x}} \). Solving \( U'(x) = 0 \) gives critical points, and evaluating \( U(x) \) at these points helps determine the maximum value. After calculations, the local maximum occurs at \( (2, 2) \). For part (b), you need to examine the sign of \( U'(x) \) to establish where the function is increasing or decreasing. By calculating the critical points from part (a) and testing intervals around these points, you'll find that \( U(x) \) is increasing on \( (0, 2) \) and decreasing on \( (2, 4) \). So, the answers in interval notation would be increasing: \( (0, 2) \) and decreasing: \( (2, 4) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad