Answer
Here are the simplified results for each part:
a) \( x + y = 20^{\circ} + 360^{\circ}k \) or \( x + y = -20^{\circ} + 360^{\circ}k \)
b) \( \cos(2x + y) = \cos(2x)\cos(y) - \sin(2x)\sin(y) \)
c) \( \cos 10^{\circ} \cos 20^{\circ} - \sin 10^{\circ} \sin 20^{\circ} = \frac{\sqrt{3}}{2} \)
d) \( \cos 62^{\circ} \sin 28^{\circ} - \cos 28^{\circ} \sin 62^{\circ} = \sin 34^{\circ} \)
e) \( \cos 30^{\circ} \cos 60^{\circ} + \sin 310^{\circ} \sin 200^{\circ} = \frac{\sqrt{3}}{4} + \frac{1}{2} (\cos 30^{\circ} - \cos 70^{\circ}) \)
f) \( \cos 70^{\circ} (1 - \cos 10^{\circ}) \)
If you need further simplifications or calculations, feel free to ask!
Solution
Let's solve each part step by step, using trigonometric identities where necessary.
### a) \( \sin x \sin y - \cos x \cos y = -\cos 20^{\circ} \)
We can use the cosine of the sum of angles identity:
\[
\sin x \sin y - \cos x \cos y = -\cos(x + y)
\]
Thus, we can rewrite the equation as:
\[
-\cos(x + y) = -\cos 20^{\circ}
\]
This implies:
\[
\cos(x + y) = \cos 20^{\circ}
\]
From this, we can conclude that:
\[
x + y = 20^{\circ} + 360^{\circ}k \quad \text{or} \quad x + y = -20^{\circ} + 360^{\circ}k \quad (k \in \mathbb{Z})
\]
### b) \( \cos(2x + y) \)
Using the cosine of a sum identity:
\[
\cos(2x + y) = \cos(2x)\cos(y) - \sin(2x)\sin(y)
\]
This expression can be simplified further if we have specific values for \( x \) and \( y \).
### c) \( \cos 10^{\circ} \cos 20^{\circ} - \sin 10^{\circ} \sin 20^{\circ} \)
Using the cosine of the sum of angles identity:
\[
\cos(10^{\circ} + 20^{\circ}) = \cos 30^{\circ}
\]
Thus:
\[
\cos 10^{\circ} \cos 20^{\circ} - \sin 10^{\circ} \sin 20^{\circ} = \cos 30^{\circ}
\]
We know that:
\[
\cos 30^{\circ} = \frac{\sqrt{3}}{2}
\]
### d) \( \cos 62^{\circ} \sin 28^{\circ} - \cos 28^{\circ} \sin 62^{\circ} \)
Using the sine of the difference of angles identity:
\[
\sin(62^{\circ} - 28^{\circ}) = \sin 34^{\circ}
\]
Thus:
\[
\cos 62^{\circ} \sin 28^{\circ} - \cos 28^{\circ} \sin 62^{\circ} = \sin 34^{\circ}
\]
### e) \( \cos 30^{\circ} \cos 60^{\circ} + \sin 310^{\circ} \sin 200^{\circ} \)
Using the product-to-sum identities:
\[
\cos 30^{\circ} \cos 60^{\circ} = \frac{1}{2} \left( \cos(30^{\circ} - 60^{\circ}) + \cos(30^{\circ} + 60^{\circ}) \right)
\]
Calculating:
\[
\cos 30^{\circ} \cos 60^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{4}
\]
For the sine terms:
\[
\sin 310^{\circ} = -\sin 50^{\circ} \quad \text{and} \quad \sin 200^{\circ} = -\sin 20^{\circ}
\]
Thus:
\[
\sin 310^{\circ} \sin 200^{\circ} = \sin 50^{\circ} \sin 20^{\circ}
\]
Using the product-to-sum identities again:
\[
\sin 50^{\circ} \sin 20^{\circ} = \frac{1}{2} \left( \cos(50^{\circ} - 20^{\circ}) - \cos(50^{\circ} + 20^{\circ}) \right)
\]
Calculating:
\[
\sin 50^{\circ} \sin 20^{\circ} = \frac{1}{2} \left( \cos 30^{\circ} - \cos 70^{\circ} \right)
\]
### f) \( \cos 70^{\circ} - \cos 350^{\circ} \cos 70^{\circ} \)
Since \( \cos 350^{\circ} = \cos(-10^{\circ}) = \cos 10^{\circ} \):
\[
\cos 70^{\circ} - \cos 10^{\circ} \cos 70^{\circ} = \cos 70^{\circ} (1 - \cos 10^{\circ})
\]
Now, let's summarize the results:
1. \( x + y = 20^{\circ} + 360^{\circ}k \) or \( x + y = -20^{\circ} + 360^{\circ}k \)
2. \( \cos(2x + y) = \cos(2x)\cos(y) - \sin(2x)\sin(y) \)
3. \( \cos 10^{\circ} \cos 20^{\circ} - \sin 10^{\circ} \sin 20^{\circ} = \frac{\sqrt{3}}{2} \)
4. \( \cos 62^{\circ} \sin 28^{\circ} - \cos 28^{\circ} \sin 62^{\circ} = \sin 34^{\circ} \)
5. \( \cos 30^{\circ} \cos 60^{\circ} + \sin 310^{\circ} \sin 200^{\circ} = \frac{\sqrt{3}}{4} + \frac{1}{2} \left( \cos 30^{\circ} - \cos 70^{\circ} \right) \)
6. \( \cos 70^{\circ} (1 - \cos 10^{\circ}) \)
If you need further calculations or simplifications, please let me know!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution