Question
upstudy study bank question image url

7. Evaluate the double integral \( \iiint_{D} y d A \) where \( D \) is the triangular region with vertices \( (0,0),(1,1) \), and \( (4,0) \)

Ask by Allan Lyons. in the United States
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of the double integral \( \iiint_{D} y\, dA \) is \( \frac{2}{3} \).

Solution

We wish to evaluate \[ \iint_{D} y\, dA, \] where the triangular region \( D \) is defined by the vertices \((0,0)\), \((1,1)\), and \((4,0)\). **Step 1. Find the equations of the boundary lines.** - **Between \((0,0)\) and \((1,1)\):** The line has slope \[ m = \frac{1-0}{1-0} = 1, \] so its equation is \[ y = x. \] - **Between \((1,1)\) and \((4,0)\):** The slope is \[ m = \frac{0-1}{4-1} = -\frac{1}{3}. \] Using the point-slope form with point \((1,1)\), \[ y - 1 = -\frac{1}{3}(x-1), \] which simplifies to \[ y = 1 - \frac{x-1}{3} = \frac{4}{3} - \frac{x}{3}. \] - **Between \((4,0)\) and \((0,0)\):** This is the horizontal line \( y = 0 \). **Step 2. Describe the region \( D \) using integration limits.** We can project the region onto the \(x\)-axis. Notice: - \( x \) varies from \( 0 \) to \( 4 \). - For a fixed \( x \), \( y \) varies from the line \( y = 0 \) (bottom) to a line that depends on \( x \): - For \( x \) between \( 0 \) and \( 1 \), the upper boundary is the line \( y = x \). - For \( x \) between \( 1 \) and \( 4 \), the upper boundary is the line \( y = \frac{4}{3} - \frac{x}{3} \). Thus, we split the integral into two regions: \[ \iint_{D} y\, dA = \int_{x=0}^{1} \int_{y=0}^{x} y\, dy\, dx + \int_{x=1}^{4} \int_{y=0}^{\frac{4}{3} - \frac{x}{3}} y\, dy\, dx. \] **Step 3. Evaluate the inner integrals.** - **For \(0 \le x \le 1\):** \[ \int_{y=0}^{x} y\, dy = \left.\frac{1}{2} y^2 \right|_{0}^{x} = \frac{1}{2} x^2. \] - **For \(1 \le x \le 4\):** \[ \int_{y=0}^{\frac{4}{3} - \frac{x}{3}} y\, dy = \left.\frac{1}{2} y^2 \right|_{0}^{\frac{4}{3} - \frac{x}{3}} = \frac{1}{2} \left(\frac{4}{3} - \frac{x}{3}\right)^2. \] **Step 4. Set up and compute the outer integrals.** - **First Integral:** \[ I_1 = \int_{x=0}^{1} \frac{1}{2} x^2\, dx = \frac{1}{2} \int_{0}^{1} x^2\, dx. \] We have \[ \int_{0}^{1} x^2\, dx = \left.\frac{x^3}{3}\right|_{0}^{1} = \frac{1}{3}, \] so \[ I_1 = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}. \] - **Second Integral:** \[ I_2 = \int_{x=1}^{4} \frac{1}{2} \left(\frac{4}{3} - \frac{x}{3}\right)^2 dx. \] Factor the constant: \[ I_2 = \frac{1}{2} \int_{x=1}^{4} \left(\frac{4-x}{3}\right)^2 dx = \frac{1}{2} \cdot \frac{1}{9} \int_{x=1}^{4} (4-x)^2\, dx = \frac{1}{18} \int_{x=1}^{4} (4-x)^2\, dx. \] Make a substitution: let \( u = 4-x \) so that \( du = - dx \). When \( x=1 \), \( u = 3 \); when \( x=4 \), \( u = 0 \). Then, \[ I_2 = \frac{1}{18} \int_{u=3}^{0} u^2\, (-du) = \frac{1}{18} \int_{u=0}^{3} u^2\, du. \] Evaluate the integral: \[ \int_{0}^{3} u^2\, du = \left.\frac{u^3}{3}\right|_{0}^{3} = \frac{27}{3} = 9, \] so \[ I_2 = \frac{1}{18} \times 9 = \frac{1}{2}. \] **Step 5. Combine the results.** The value of the integral is: \[ \iint_{D} y\, dA = I_1 + I_2 = \frac{1}{6} + \frac{1}{2} = \frac{1}{6} + \frac{3}{6} = \frac{4}{6} = \frac{2}{3}. \] Thus, the value of the double integral is \[ \boxed{\frac{2}{3}}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the double integral \( \iiint_{D} y \, dA \) over the triangular region \( D \) with vertices \( (0,0), (1,1), \) and \( (4,0) \), we first need to determine the limits of integration for the triangular region. 1. **Identifying the triangle's boundaries:** The line from \( (0,0) \) to \( (4,0) \) is simply the x-axis, where \( y = 0 \). The line from \( (0,0) \) to \( (1,1) \) can be described by the equation \( y = x \). The line from \( (1,1) \) to \( (4,0) \) can be determined by calculating the slope, which is \( \frac{0-1}{4-1} = -\frac{1}{3} \). The equation of the line is \( y = -\frac{1}{3}(x-4) = -\frac{1}{3}x + \frac{4}{3} \). 2. **Setting up the double integral:** Now we can set the limits for \( x \) and \( y \). For each vertical slice at a given \( x \), \( y \) ranges from \( 0 \) (the x-axis) to the line \( y = -\frac{1}{3}x + \frac{4}{3} \) for \( 1 \leq x \leq 4 \) and \( y = x \) for \( 0 \leq x \leq 1 \). Thus, the double integral can be split into two parts: \[ \int_0^1 \int_0^x y \, dy \, dx + \int_1^4 \int_0^{-\frac{1}{3}x + \frac{4}{3}} y \, dy \, dx \] 3. **Calculating the first integral:** \[ \int_0^1 \int_0^x y \, dy \, dx = \int_0^1 \left[ \frac{y^2}{2} \right]_0^x \, dx = \int_0^1 \frac{x^2}{2} \, dx = \left[ \frac{x^3}{6} \right]_0^1 = \frac{1}{6} \] 4. **Calculating the second integral:** \[ \int_1^4 \int_0^{-\frac{1}{3}x + \frac{4}{3}} y \, dy \, dx = \int_1^4 \left[ \frac{y^2}{2} \right]_0^{-\frac{1}{3}x + \frac{4}{3}} \, dx = \int_1^4 \frac{1}{2} \left(-\frac{1}{3}x + \frac{4}{3}\right)^2 \, dx \] Expanding the square: \[ = \int_1^4 \frac{1}{2} \left(\frac{1}{9}x^2 - \frac{8}{9}x + \frac{16}{9}\right) \, dx = \frac{1}{18} \int_1^4 (x^2 - 8x + 16) \, dx \] Now calculating the integral: \[ = \frac{1}{18} \left[ \frac{x^3}{3} - 4x^2 + 16x \right]_1^4 \] Evaluating at the limits: \[ = \frac{1}{18} \left( \left(\frac{64}{3} - 64 + 64\right) - \left(\frac{1}{3} - 4 + 16\right)\right) = \frac{1}{18} \left(\frac{64}{3} - \frac{1}{3} + 0\right) = \frac{1}{18} \times \frac{63}{3} = \frac{21}{18} = \frac{7}{6} \] 5. **Final result:** Adding both parts together: \[ \frac{1}{6} + \frac{7}{6} = \frac{8}{6} = \frac{4}{3} \] Hence, the value of the double integral is

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy