Pregunta
upstudy study bank question image url

7. Evaluate the double integral \( \iiint_{D} y d A \) where \( D \) is the triangular region with vertices \( (0,0),(1,1) \), and \( (4,0) \)

Ask by Allan Lyons. in the United States
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of the double integral \( \iiint_{D} y\, dA \) is \( \frac{2}{3} \).

Solución

We wish to evaluate \[ \iint_{D} y\, dA, \] where the triangular region \( D \) is defined by the vertices \((0,0)\), \((1,1)\), and \((4,0)\). **Step 1. Find the equations of the boundary lines.** - **Between \((0,0)\) and \((1,1)\):** The line has slope \[ m = \frac{1-0}{1-0} = 1, \] so its equation is \[ y = x. \] - **Between \((1,1)\) and \((4,0)\):** The slope is \[ m = \frac{0-1}{4-1} = -\frac{1}{3}. \] Using the point-slope form with point \((1,1)\), \[ y - 1 = -\frac{1}{3}(x-1), \] which simplifies to \[ y = 1 - \frac{x-1}{3} = \frac{4}{3} - \frac{x}{3}. \] - **Between \((4,0)\) and \((0,0)\):** This is the horizontal line \( y = 0 \). **Step 2. Describe the region \( D \) using integration limits.** We can project the region onto the \(x\)-axis. Notice: - \( x \) varies from \( 0 \) to \( 4 \). - For a fixed \( x \), \( y \) varies from the line \( y = 0 \) (bottom) to a line that depends on \( x \): - For \( x \) between \( 0 \) and \( 1 \), the upper boundary is the line \( y = x \). - For \( x \) between \( 1 \) and \( 4 \), the upper boundary is the line \( y = \frac{4}{3} - \frac{x}{3} \). Thus, we split the integral into two regions: \[ \iint_{D} y\, dA = \int_{x=0}^{1} \int_{y=0}^{x} y\, dy\, dx + \int_{x=1}^{4} \int_{y=0}^{\frac{4}{3} - \frac{x}{3}} y\, dy\, dx. \] **Step 3. Evaluate the inner integrals.** - **For \(0 \le x \le 1\):** \[ \int_{y=0}^{x} y\, dy = \left.\frac{1}{2} y^2 \right|_{0}^{x} = \frac{1}{2} x^2. \] - **For \(1 \le x \le 4\):** \[ \int_{y=0}^{\frac{4}{3} - \frac{x}{3}} y\, dy = \left.\frac{1}{2} y^2 \right|_{0}^{\frac{4}{3} - \frac{x}{3}} = \frac{1}{2} \left(\frac{4}{3} - \frac{x}{3}\right)^2. \] **Step 4. Set up and compute the outer integrals.** - **First Integral:** \[ I_1 = \int_{x=0}^{1} \frac{1}{2} x^2\, dx = \frac{1}{2} \int_{0}^{1} x^2\, dx. \] We have \[ \int_{0}^{1} x^2\, dx = \left.\frac{x^3}{3}\right|_{0}^{1} = \frac{1}{3}, \] so \[ I_1 = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}. \] - **Second Integral:** \[ I_2 = \int_{x=1}^{4} \frac{1}{2} \left(\frac{4}{3} - \frac{x}{3}\right)^2 dx. \] Factor the constant: \[ I_2 = \frac{1}{2} \int_{x=1}^{4} \left(\frac{4-x}{3}\right)^2 dx = \frac{1}{2} \cdot \frac{1}{9} \int_{x=1}^{4} (4-x)^2\, dx = \frac{1}{18} \int_{x=1}^{4} (4-x)^2\, dx. \] Make a substitution: let \( u = 4-x \) so that \( du = - dx \). When \( x=1 \), \( u = 3 \); when \( x=4 \), \( u = 0 \). Then, \[ I_2 = \frac{1}{18} \int_{u=3}^{0} u^2\, (-du) = \frac{1}{18} \int_{u=0}^{3} u^2\, du. \] Evaluate the integral: \[ \int_{0}^{3} u^2\, du = \left.\frac{u^3}{3}\right|_{0}^{3} = \frac{27}{3} = 9, \] so \[ I_2 = \frac{1}{18} \times 9 = \frac{1}{2}. \] **Step 5. Combine the results.** The value of the integral is: \[ \iint_{D} y\, dA = I_1 + I_2 = \frac{1}{6} + \frac{1}{2} = \frac{1}{6} + \frac{3}{6} = \frac{4}{6} = \frac{2}{3}. \] Thus, the value of the double integral is \[ \boxed{\frac{2}{3}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the double integral \( \iiint_{D} y \, dA \) over the triangular region \( D \) with vertices \( (0,0), (1,1), \) and \( (4,0) \), we first need to determine the limits of integration for the triangular region. 1. **Identifying the triangle's boundaries:** The line from \( (0,0) \) to \( (4,0) \) is simply the x-axis, where \( y = 0 \). The line from \( (0,0) \) to \( (1,1) \) can be described by the equation \( y = x \). The line from \( (1,1) \) to \( (4,0) \) can be determined by calculating the slope, which is \( \frac{0-1}{4-1} = -\frac{1}{3} \). The equation of the line is \( y = -\frac{1}{3}(x-4) = -\frac{1}{3}x + \frac{4}{3} \). 2. **Setting up the double integral:** Now we can set the limits for \( x \) and \( y \). For each vertical slice at a given \( x \), \( y \) ranges from \( 0 \) (the x-axis) to the line \( y = -\frac{1}{3}x + \frac{4}{3} \) for \( 1 \leq x \leq 4 \) and \( y = x \) for \( 0 \leq x \leq 1 \). Thus, the double integral can be split into two parts: \[ \int_0^1 \int_0^x y \, dy \, dx + \int_1^4 \int_0^{-\frac{1}{3}x + \frac{4}{3}} y \, dy \, dx \] 3. **Calculating the first integral:** \[ \int_0^1 \int_0^x y \, dy \, dx = \int_0^1 \left[ \frac{y^2}{2} \right]_0^x \, dx = \int_0^1 \frac{x^2}{2} \, dx = \left[ \frac{x^3}{6} \right]_0^1 = \frac{1}{6} \] 4. **Calculating the second integral:** \[ \int_1^4 \int_0^{-\frac{1}{3}x + \frac{4}{3}} y \, dy \, dx = \int_1^4 \left[ \frac{y^2}{2} \right]_0^{-\frac{1}{3}x + \frac{4}{3}} \, dx = \int_1^4 \frac{1}{2} \left(-\frac{1}{3}x + \frac{4}{3}\right)^2 \, dx \] Expanding the square: \[ = \int_1^4 \frac{1}{2} \left(\frac{1}{9}x^2 - \frac{8}{9}x + \frac{16}{9}\right) \, dx = \frac{1}{18} \int_1^4 (x^2 - 8x + 16) \, dx \] Now calculating the integral: \[ = \frac{1}{18} \left[ \frac{x^3}{3} - 4x^2 + 16x \right]_1^4 \] Evaluating at the limits: \[ = \frac{1}{18} \left( \left(\frac{64}{3} - 64 + 64\right) - \left(\frac{1}{3} - 4 + 16\right)\right) = \frac{1}{18} \left(\frac{64}{3} - \frac{1}{3} + 0\right) = \frac{1}{18} \times \frac{63}{3} = \frac{21}{18} = \frac{7}{6} \] 5. **Final result:** Adding both parts together: \[ \frac{1}{6} + \frac{7}{6} = \frac{8}{6} = \frac{4}{3} \] Hence, the value of the double integral is

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad