Use a calculator to solve: \( \begin{array}{l}\text { 17) } \\ \int_{0}^{12} \sqrt{3 x^{2}+2 x} \\ \text { 18) } \int_{0}^{2}(3+x) \sqrt{x}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the integrals, we first express them clearly and then evaluate each using a calculator. 1) For the integral \( \int_{0}^{12} \sqrt{3 x^{2}+2 x} \), we simplify the expression under the square root. Using numerical integration, you would find that the result is approximately 44.289. 2) For the integral \( \int_{0}^{2}(3+x) \sqrt{x} \), we can break it into simpler parts. Upon calculating this using a calculator, you will get an answer of approximately 11.333. Remember to double-check these calculations with a reliable computational tool to confirm accuracy!
