14 Use \( \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \) to prove that. 1) \( \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \) iii) \( \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \) iii) \( \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \) I. 5 Use the above to prove that i) \( \sin 2 \beta=2 \sin \beta \cos \beta \) ii) \( \cos 2 \beta=1-2 \sin ^{2} \beta \) 1.6 Evaluat \( \sin 75^{\circ} \cos 75^{\circ} \) Without using a calculator.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To prove \( \cos(\alpha + \beta) \), realize that it’s simply \( \cos(\alpha - (-\beta)) \). Using the identity: \[ \cos(\alpha + \beta) = \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta) \] Since \( \cos(-\beta) = \cos \beta \) and \( \sin(-\beta) = -\sin \beta \), this becomes: \[ \cos \alpha \cos \beta - \sin \alpha \sin \beta \] For \( \sin(\alpha + \beta) \), apply the identity with \( \beta \) negated: \[ \sin(\alpha + \beta) = \sin(\alpha - (-\beta)) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Next, to prove \( \sin(\alpha - \beta) \): Use \( \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \) directly, which can be verified by substituting \( \beta \) with \(-\beta\) in the addition formula. Now, for the double angle identities, set \(\alpha = \beta\) in the derived formulas. Hence, 1. \( \sin 2\beta = \sin(\beta + \beta) = 2\sin \beta \cos \beta \) directly from the sine addition formula. 2. For \( \cos 2\beta \), substitute in the cosine addition as the angle sums to 0: \[ \cos 2\beta = \cos^2 \beta - \sin^2 \beta = 1 - 2\sin^2 \beta \] Finally, to evaluate \( \sin 75^\circ \cos 75^\circ \): Using the double angle identity, we know \( \sin(2 \cdot 75^\circ) = \sin(150^\circ) = \frac{1}{2} \). Thus, \[ \sin 75^\circ \cos 75^\circ = \frac{1}{2} \sin 150^\circ = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. \]
