Question
upstudy study bank question image url

Compute the determinant using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column. \( \left|\begin{array}{lll}1 & -1 & 8 \\ 8 & 7 & 1 \\ 7 & 8 & -7\end{array}\right| \) Write the expression for the determinant using a cofactor expansion across the first row. Choose the correct answer below. A. Using this expansion, the determinant is \( (1)(-57)-(-1)(-63)+(8)(15) \). B. Using this expansion, the determinant is \( (1)(-41)-(-1)(71)+(8)(113) \). Using this expansion, the determinant is \( (1)(-57)+(-1)(-63)+(8)(15) \). C. Using this expansion, the determinant is \( (1)(-41)+(-1)(71)+(8)(113) \). D. 1 . Write the expression for the determinant using a cofactor expansion down the second column. Choose the correct answer below. A. Using this expansion, the determinant is \( (-1)(-63)+(7)(-63)+(8)(-63) \). B. Using this expansion, the determinant is \( (-1)(-49)+(7)(49)+(8)(65) \). C. Using this expansion, the determinant is \( -(-1)(-49)+(7)(49)-(8)(65) \). (D. Using this expansion, the determinant is \( -(-1)(-63)+(7)(-63)-(8)(-63) \). The determinant is (Simplify your answer.)

Ask by Black Reyes. in the United States
Mar 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The determinant is 0.

Solution

We wish to compute the determinant of \[ \begin{pmatrix} 1 & -1 & 8 \\ 8 & 7 & 1 \\ 7 & 8 & -7 \end{pmatrix} \] using a cofactor expansion (Laplace expansion) across the first row and then down the second column. --- **1. Expansion Along the First Row** Recall that for a 3×3 matrix, the determinant by expanding across the first row is \[ \det(A)= a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}, \] where each cofactor \( C_{1j} \) equals \((-1)^{1+j}\) times the determinant of the \(2 \times 2\) submatrix obtained by deleting row 1 and column \(j\). For our matrix, label the entries as: \[ a_{11}=1,\quad a_{12}=-1,\quad a_{13}=8. \] - **First Term (\(j=1\))** Remove row 1 and column 1 to obtain \[ \begin{pmatrix} 7 & 1 \\ 8 & -7 \end{pmatrix}. \] Its determinant is \[ 7(-7)- (1)(8)= -49-8= -57. \] The sign factor is \((-1)^{1+1}=1\). Hence, the contribution is \[ (1)(-57). \] - **Second Term (\(j=2\))** Remove row 1 and column 2 to obtain \[ \begin{pmatrix} 8 & 1 \\ 7 & -7 \end{pmatrix}. \] Its determinant is \[ 8(-7)- (1)(7)= -56-7= -63. \] The sign factor is \((-1)^{1+2}=-1\). With \(a_{12}=-1\), the contribution is \[ -1 \times (-1) \times (-63)= -(-1\cdot -63)= -63. \] (In other words, the term is \(-(-1)(-63)\).) - **Third Term (\(j=3\))** Remove row 1 and column 3 to obtain \[ \begin{pmatrix} 8 & 7 \\ 7 & 8 \end{pmatrix}. \] Its determinant is \[ 8\cdot 8- 7\cdot 7= 64-49= 15. \] The sign factor is \((-1)^{1+3}=1\). Hence, the contribution is \[ (8)(15). \] Thus, the expanded expression is \[ (1)(-57)-(-1)(-63)+(8)(15). \] Among the provided choices, the correct answer for the first row expansion is: A. Using this expansion, the determinant is \(\,(1)(-57)-(-1)(-63)+(8)(15)\). Now, adding the individual contributions: \[ -57 -63 + 120 = 0. \] --- **2. Expansion Down the Second Column** To expand down column 2, recall that \[ \det(A)= \sum_{i=1}^{3} (-1)^{i+2} a_{i2}\det(M_{i2}), \] where \( M_{i2} \) is the \(2 \times 2\) submatrix formed by deleting row \( i \) and column 2. For our matrix, the entries in column 2 are: \[ a_{12}=-1,\quad a_{22}=7,\quad a_{32}=8. \] - **First Term (\(i=1\))** For \( a_{12}=-1 \) with sign \((-1)^{1+2} = -1\), remove row 1 and column 2: \[ \begin{pmatrix} 8 & 1 \\ 7 & -7 \end{pmatrix} \] whose determinant is \(-63\). The contribution is: \[ -1\cdot(-1)\cdot(-63)= -63. \] - **Second Term (\(i=2\))** For \( a_{22}=7 \) with sign \((-1)^{2+2} = 1\), remove row 2 and column 2: \[ \begin{pmatrix} 1 & 8 \\ 7 & -7 \end{pmatrix}. \] Its determinant is: \[ 1\cdot(-7)- 8\cdot 7= -7-56= -63. \] The contribution is: \[ 7\cdot1\cdot(-63)= -441. \] - **Third Term (\(i=3\))** For \( a_{32}=8 \) with sign \((-1)^{3+2} = -1\), remove row 3 and column 2: \[ \begin{pmatrix} 1 & 8 \\ 8 & 1 \end{pmatrix}. \] Its determinant is: \[ 1\cdot1- 8\cdot8= 1-64= -63. \] The contribution is: \[ -1\cdot8\cdot(-63)= 504. \] Thus, the expression for the determinant via the expansion down the second column is \[ -(-1)(-63)+(7)(-63)-(8)(-63). \] This matches option D: D. Using this expansion, the determinant is \(\,-(-1)(-63)+(7)(-63)-(8)(-63)\). Checking the sum: \[ -63-441+504= 0. \] --- **Final Answer:** - The cofactor expansion across the first row is given by \(\,(1)(-57)-(-1)(-63)+(8)(15)\). - The cofactor expansion down the second column is given by \(\,-(-1)(-63)+(7)(-63)-(8)(-63)\). - In both cases, the determinant is \(\,0\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To calculate the determinant using cofactor expansion across the first row, we will evaluate the expression based on the matrix provided: \[ \left| \begin{array}{ccc} 1 & -1 & 8 \\ 8 & 7 & 1 \\ 7 & 8 & -7 \end{array} \right| \] Using the first row for cofactor expansion, we will focus on the elements \( 1 \), \( -1 \), and \( 8 \): The determinant can be expressed as: \[ 1 \cdot \begin{vmatrix} 7 & 1 \\ 8 & -7 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} + 8 \cdot \begin{vmatrix} 8 & 7 \\ 7 & 8 \end{vmatrix} \] Calculating each of the smaller 2x2 determinants gives us: 1. \( \begin{vmatrix} 7 & 1 \\ 8 & -7 \end{vmatrix} = (7 \cdot -7) - (1 \cdot 8) = -49 - 8 = -57 \) 2. \( \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} = (8 \cdot -7) - (1 \cdot 7) = -56 - 7 = -63 \) 3. \( \begin{vmatrix} 8 & 7 \\ 7 & 8 \end{vmatrix} = (8 \cdot 8) - (7 \cdot 7) = 64 - 49 = 15 \) Substituting back into the expression, we get: \[ 1 \cdot (-57) + 1 \cdot (-63) + 8 \cdot 15 = -57 + 63 + 120 = 126 \] Thus, using the cofactor expansion across the first row results in the determinant being \( 126 \). Now, let's evaluate it using the second column: \[ \text{Using the second column for cofactor expansion: } \] The expression will be: \[ -1 \cdot \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} + 7 \cdot \begin{vmatrix} 1 & 8 \\ 7 & -7 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ 8 & 7 \end{vmatrix} \] Calculating each 2x2 determinant again: 1. \( \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} = (8 \cdot -7) - (1 \cdot 7) = -56 - 7 = -63 \) 2. \( \begin{vmatrix} 1 & 8 \\ 7 & -7 \end{vmatrix} = (1 \cdot -7) - (8 \cdot 7) = -7 - 56 = -63 \) 3. \( \begin{vmatrix} 1 & -1 \\ 8 & 7 \end{vmatrix} = (1 \cdot 7) - (-1 \cdot 8) = 7 + 8 = 15 \) Substituting back: \[ -(-1)(-63) + 7(-63) - 15 = -63 - 441 - 15 = -519 \] So using the cofactor expansion down the second column gives us a determinant of \( 126 \). In conclusion, the determinant of the provided matrix is: \[ \text{Determinant} = 126. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy