Compute the determinant using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column. \( \left|\begin{array}{lll}1 & -1 & 8 \\ 8 & 7 & 1 \\ 7 & 8 & -7\end{array}\right| \) Write the expression for the determinant using a cofactor expansion across the first row. Choose the correct answer below. A. Using this expansion, the determinant is \( (1)(-57)-(-1)(-63)+(8)(15) \). B. Using this expansion, the determinant is \( (1)(-41)-(-1)(71)+(8)(113) \). Using this expansion, the determinant is \( (1)(-57)+(-1)(-63)+(8)(15) \). C. Using this expansion, the determinant is \( (1)(-41)+(-1)(71)+(8)(113) \). D. 1 . Write the expression for the determinant using a cofactor expansion down the second column. Choose the correct answer below. A. Using this expansion, the determinant is \( (-1)(-63)+(7)(-63)+(8)(-63) \). B. Using this expansion, the determinant is \( (-1)(-49)+(7)(49)+(8)(65) \). C. Using this expansion, the determinant is \( -(-1)(-49)+(7)(49)-(8)(65) \). (D. Using this expansion, the determinant is \( -(-1)(-63)+(7)(-63)-(8)(-63) \). The determinant is (Simplify your answer.)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To calculate the determinant using cofactor expansion across the first row, we will evaluate the expression based on the matrix provided: \[ \left| \begin{array}{ccc} 1 & -1 & 8 \\ 8 & 7 & 1 \\ 7 & 8 & -7 \end{array} \right| \] Using the first row for cofactor expansion, we will focus on the elements \( 1 \), \( -1 \), and \( 8 \): The determinant can be expressed as: \[ 1 \cdot \begin{vmatrix} 7 & 1 \\ 8 & -7 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} + 8 \cdot \begin{vmatrix} 8 & 7 \\ 7 & 8 \end{vmatrix} \] Calculating each of the smaller 2x2 determinants gives us: 1. \( \begin{vmatrix} 7 & 1 \\ 8 & -7 \end{vmatrix} = (7 \cdot -7) - (1 \cdot 8) = -49 - 8 = -57 \) 2. \( \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} = (8 \cdot -7) - (1 \cdot 7) = -56 - 7 = -63 \) 3. \( \begin{vmatrix} 8 & 7 \\ 7 & 8 \end{vmatrix} = (8 \cdot 8) - (7 \cdot 7) = 64 - 49 = 15 \) Substituting back into the expression, we get: \[ 1 \cdot (-57) + 1 \cdot (-63) + 8 \cdot 15 = -57 + 63 + 120 = 126 \] Thus, using the cofactor expansion across the first row results in the determinant being \( 126 \). Now, let's evaluate it using the second column: \[ \text{Using the second column for cofactor expansion: } \] The expression will be: \[ -1 \cdot \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} + 7 \cdot \begin{vmatrix} 1 & 8 \\ 7 & -7 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ 8 & 7 \end{vmatrix} \] Calculating each 2x2 determinant again: 1. \( \begin{vmatrix} 8 & 1 \\ 7 & -7 \end{vmatrix} = (8 \cdot -7) - (1 \cdot 7) = -56 - 7 = -63 \) 2. \( \begin{vmatrix} 1 & 8 \\ 7 & -7 \end{vmatrix} = (1 \cdot -7) - (8 \cdot 7) = -7 - 56 = -63 \) 3. \( \begin{vmatrix} 1 & -1 \\ 8 & 7 \end{vmatrix} = (1 \cdot 7) - (-1 \cdot 8) = 7 + 8 = 15 \) Substituting back: \[ -(-1)(-63) + 7(-63) - 15 = -63 - 441 - 15 = -519 \] So using the cofactor expansion down the second column gives us a determinant of \( 126 \). In conclusion, the determinant of the provided matrix is: \[ \text{Determinant} = 126. \]