Dado el campo vectorial \( \mathbf{F}(x, y, z)=\left(y^{2}+3 z\right) \mathbf{i}+(2 x+z) \mathbf{j}+\left(x^{2}-y\right) \mathbf{k} \) ¿cuál es el rotacional \( \nabla \times \mathbf{F} \) ?
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
Para calcular el rotacional \( \nabla \times \mathbf{F} \) del campo vectorial \( \mathbf{F}(x, y, z)=(y^{2}+3 z) \mathbf{i}+(2 x+z) \mathbf{j}+\left(x^{2}-y\right) \mathbf{k} \), utilizamos la fórmula del rotacional: \[ \nabla \times \mathbf{F} = \left( \frac{\partial F_k}{\partial y} - \frac{\partial F_j}{\partial z} \right) \mathbf{i} - \left( \frac{\partial F_k}{\partial x} - \frac{\partial F_i}{\partial z} \right) \mathbf{j} + \left( \frac{\partial F_j}{\partial x} - \frac{\partial F_i}{\partial y} \right) \mathbf{k} \] Calculando cada componente: 1. \( \frac{\partial F_k}{\partial y} = \frac{\partial (x^2 - y)}{\partial y} = -1 \) y \( \frac{\partial F_j}{\partial z} = \frac{\partial (2x + z)}{\partial z} = 1 \), por lo que la componente \( i \) es \( -1 - 1 = -2 \). 2. \( \frac{\partial F_k}{\partial x} = \frac{\partial (x^2 - y)}{\partial x} = 2x \) y \( \frac{\partial F_i}{\partial z} = \frac{\partial (y^2 + 3z)}{\partial z} = 3 \), así que la componente \( j \) es \( 2x - 3 \). 3. \( \frac{\partial F_j}{\partial x} = \frac{\partial (2x + z)}{\partial x} = 2 \) y \( \frac{\partial F_i}{\partial y} = \frac{\partial (y^2 + 3z)}{\partial y} = 2y \), por lo que la componente \( k \) es \( 2 - 2y \). Por lo tanto, el rotacional es: \[ \nabla \times \mathbf{F} = -2 \mathbf{i} - (2x - 3) \mathbf{j} + (2 - 2y) \mathbf{k} \] En forma simplificada: \[ \nabla \times \mathbf{F} = -2 \mathbf{i} - (2x - 3) \mathbf{j} + (2 - 2y) \mathbf{k} \]