Answer
For the function \( y = \frac{\sqrt{x^2 + 4}}{8x} \), the derivative at \( x = -4 \) is \( y'(-4) = -\frac{1}{64\sqrt{5}} \).
For the function \( y = (x^2 - 7)\sqrt{x^2 - 5} \), the derivative at \( x = -4 \) is \( y'(-4) = -8\sqrt{11} - \frac{36}{\sqrt{11}} \) or \( y'(-4) = -\frac{124}{\sqrt{11}} \).
Solution
We start with the two functions. In each case our goal is to differentiate the function and then evaluate the derivative at \( x=-4 \).
---
### 1. For the function
\[
y=\frac{\sqrt{x^2+4}}{8x},
\]
we proceed as follows.
Write
\[
y(x)=\frac{f(x)}{g(x)} \quad \text{with} \quad f(x)=\sqrt{x^2+4}=(x^2+4)^{\frac{1}{2}} \quad \text{and} \quad g(x)=8x.
\]
The quotient rule gives
\[
y'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}.
\]
1. **Differentiate \( f(x) \):**
\[
f'(x)=\frac{d}{dx}\,(x^2+4)^{\frac{1}{2}}=\frac{1}{2}(x^2+4)^{-\frac{1}{2}}\cdot 2x=\frac{x}{\sqrt{x^2+4}}.
\]
2. **Differentiate \( g(x) \):**
\[
g'(x)=\frac{d}{dx}(8x)=8.
\]
3. **Apply the quotient rule:**
\[
y'(x)=\frac{\frac{x}{\sqrt{x^2+4}}(8x)-\sqrt{x^2+4}(8)}{(8x)^2}.
\]
Simplify the numerator:
\[
\frac{8x^2}{\sqrt{x^2+4}}-8\sqrt{x^2+4} = 8\left(\frac{x^2-\left(x^2+4\right)}{\sqrt{x^2+4}}\right)=\frac{-32}{\sqrt{x^2+4}}.
\]
The denominator is
\[
(8x)^2=64x^2.
\]
Hence,
\[
y'(x)=\frac{-32}{64x^2\sqrt{x^2+4}}=\frac{-1}{2x^2\sqrt{x^2+4}}.
\]
4. **Evaluate at \( x=-4 \):**
Compute
\[
(-4)^2=16,\quad \sqrt{16+4}=\sqrt{20}=2\sqrt{5}.
\]
So,
\[
y'(-4)=\frac{-1}{2\cdot 16\cdot2\sqrt{5}}=\frac{-1}{64\sqrt{5}}.
\]
Thus, the derivative at \( x=-4 \) is
\[
y'(-4)=-\frac{1}{64\sqrt{5}}.
\]
---
### 2. For the function
\[
y=(x^2-7)\sqrt{x^2-5},
\]
we use the product rule.
Let
\[
u(x)=x^2-7\quad \text{and} \quad v(x)=\sqrt{x^2-5}=(x^2-5)^{\frac{1}{2}}.
\]
Then
\[
y(x)=u(x)v(x)
\]
and the product rule gives
\[
y'(x)=u'(x)v(x)+u(x)v'(x).
\]
1. **Differentiate \( u(x) \):**
\[
u'(x)=\frac{d}{dx}(x^2-7)=2x.
\]
2. **Differentiate \( v(x) \):**
\[
v'(x)=\frac{d}{dx} (x^2-5)^{\frac{1}{2}}=\frac{1}{2}(x^2-5)^{-\frac{1}{2}}\cdot 2x=\frac{x}{\sqrt{x^2-5}}.
\]
3. **Write the derivative:**
\[
y'(x)=2x\sqrt{x^2-5}+(x^2-7)\frac{x}{\sqrt{x^2-5}}.
\]
4. **Evaluate at \( x=-4 \):**
Calculate each part:
- For \( x=-4 \):
\[
(-4)^2=16.
\]
- Then,
\[
\sqrt{x^2-5}=\sqrt{16-5}=\sqrt{11}.
\]
- Also,
\[
x^2-7=16-7=9.
\]
Hence, the first term becomes
\[
2x\sqrt{x^2-5}=2(-4)\sqrt{11}=-8\sqrt{11},
\]
and the second term is
\[
(x^2-7)\frac{x}{\sqrt{x^2-5}}=9\frac{-4}{\sqrt{11}}=-\frac{36}{\sqrt{11}}.
\]
Combining,
\[
y'(-4)=-8\sqrt{11}-\frac{36}{\sqrt{11}}.
\]
We can also combine the two terms over a common denominator:
\[
-8\sqrt{11} = -\frac{8\cdot11}{\sqrt{11}}=-\frac{88}{\sqrt{11}},
\]
so that
\[
y'(-4)=-\frac{88}{\sqrt{11}}-\frac{36}{\sqrt{11}}=-\frac{124}{\sqrt{11}}.
\]
Thus, the derivative at \( x=-4 \) is
\[
y'(-4)=-\frac{124}{\sqrt{11}}.
\]
---
### Final Answers
1. For \( y=\frac{\sqrt{x^2+4}}{8x} \):
\[
y'(-4)=-\frac{1}{64\sqrt{5}}.
\]
2. For \( y=(x^2-7)\sqrt{x^2-5} \):
\[
y'(-4)=-8\sqrt{11}-\frac{36}{\sqrt{11}} \quad \text{or} \quad y'(-4)=-\frac{124}{\sqrt{11}}.
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution