Question
upstudy study bank question image url

If \( \sin \theta=\frac{12}{13}, 0<\theta<\frac{\pi}{2} \), find the exact value of each of the following. \( \begin{array}{lllll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} & \text { (e) } \tan 2 \theta\end{array} \) (f) \( \tan \frac{\theta}{2} \)

Ask by Ball Sandoval. in the United States
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) sin(2θ) = 120/169 (b) cos(2θ) = –119/169 (c) sin(θ/2) = (2√13)/13 (d) cos(θ/2) = (3√13)/13 (e) tan(2θ) = –120/119 (f) tan(θ/2) = 2/3

Solution

We are given that   sin θ = 12/13  with  0 < θ < π/2. Since θ is in the first quadrant both sin θ and cos θ are positive. Step 1. Find cos θ. Using the Pythagorean identity:   cos θ = √(1 – sin²θ) = √(1 – (12/13)²)        = √(1 – 144/169) = √((169 – 144)/169)        = √(25/169) = 5/13. Now, using the double-angle and half-angle formulas, we compute each expression. ──────────────────────────── (a) sin (2θ) The double-angle formula for sine is:   sin(2θ) = 2 sin θ cos θ. Thus,   sin(2θ) = 2 · (12/13) · (5/13) = 120/169. ──────────────────────────── (b) cos (2θ) One common form of the double-angle formula for cosine is:   cos(2θ) = cos²θ – sin²θ. So,   cos(2θ) = (5/13)² – (12/13)² = (25/169) – (144/169)        = –119/169. It is perfectly acceptable for cos(2θ) to be negative since 2θ falls in the interval (0, π) where cosine can be negative. ──────────────────────────── (c) sin (θ/2) For the half-angle formulas, we have:   sin(θ/2) = √[(1 – cos θ)/2]. Substitute cos θ = 5/13:   sin(θ/2) = √[(1 – 5/13)/2] = √[(8/13)/2] = √(8/26) = √(4/13)        = 2/√13. It is often preferable to rationalize the denominator:   sin(θ/2) = (2√13)/13. ──────────────────────────── (d) cos (θ/2) Similarly, the half-angle formula for cosine is:   cos(θ/2) = √[(1 + cos θ)/2]. Using cos θ = 5/13:   cos(θ/2) = √[(1 + 5/13)/2] = √[(18/13)/2] = √(18/26) = √(9/13)        = 3/√13, or (3√13)/13 after rationalizing. ──────────────────────────── (e) tan (2θ) There are several ways to find tan(2θ). One method is to use:   tan(2θ) = sin(2θ)/cos(2θ). Using our earlier results:   tan(2θ) = (120/169)/(–119/169) = –120/119. ──────────────────────────── (f) tan (θ/2) One useful half-angle formula for tangent is:   tan(θ/2) = sin θ/(1 + cos θ). Substitute sin θ = 12/13 and cos θ = 5/13:   tan(θ/2) = (12/13) / (1 + 5/13) = (12/13) / (18/13)        = 12/18 = 2/3. An alternative half-angle formula is:   tan(θ/2) = √[(1 – cos θ)/(1 + cos θ)], which leads to the same result after simplification. ──────────────────────────── Summary of Answers:   (a) sin (2θ) = 120/169   (b) cos (2θ) = –119/169   (c) sin (θ/2) = (2√13)/13   (d) cos (θ/2) = (3√13)/13   (e) tan (2θ) = –120/119   (f) tan (θ/2) = 2/3

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the problem, we start with the given information: \( \sin \theta = \frac{12}{13} \). We can find \( \cos \theta \) using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). 1. **Find \( \cos \theta \)**: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Therefore, \( \cos \theta = \sqrt{\frac{25}{169}} = \frac{5}{13} \) (since \( 0 < \theta < \frac{\pi}{2} \)). Now we can find the exact values for each part. (a) **Find \( \sin (2\theta) \)**: \[ \sin (2\theta) = 2 \sin \theta \cos \theta = 2 \cdot \frac{12}{13} \cdot \frac{5}{13} = \frac{120}{169} \] (b) **Find \( \cos (2\theta) \)**: Using the identity \( \cos (2\theta) = \cos^2 \theta - \sin^2 \theta \): \[ \cos (2\theta) = \left(\frac{5}{13}\right)^2 - \left(\frac{12}{13}\right)^2 = \frac{25}{169} - \frac{144}{169} = -\frac{119}{169} \] (c) **Find \( \sin \frac{\theta}{2} \)**: Using the half-angle formula \( \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \frac{5}{13}}{2}} = \sqrt{\frac{\frac{8}{13}}{2}} = \sqrt{\frac{8}{26}} = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13} \] (d) **Find \( \cos \frac{\theta}{2} \)**: Using the half-angle formula \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \frac{5}{13}}{2}} = \sqrt{\frac{\frac{18}{13}}{2}} = \sqrt{\frac{18}{26}} = \sqrt{\frac{9}{13}} = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13} \] (e) **Find \( \tan (2\theta) \)**: Using the identity \( \tan (2\theta) = \frac{\sin (2\theta)}{\cos (2\theta)} \): \[ \tan (2\theta) = \frac{\frac{120}{169}}{-\frac{119}{169}} = -\frac{120}{119} \] (f) **Find \( \tan \frac{\theta}{2} \)**: Using the identity \( \tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta} \): \[ \tan \frac{\theta}{2} = \frac{\frac{12}{13}}{1 + \frac{5}{13}} = \frac{\frac{12}{13}}{\frac{18}{13}} = \frac{12}{18} = \frac{2}{3} \] So, the final answers are: - (a) \( \sin (2\theta) = \frac{120}{169} \) - (b) \( \cos (2\theta) = -\frac{119}{169} \) - (c) \( \sin \frac{\theta}{2} = \frac{2\sqrt{13}}{13} \) - (d) \( \cos \frac{\theta}{2} = \frac{3\sqrt{13}}{13} \) - (e) \( \tan (2\theta) = -\frac{120}{119} \) - (f) \( \tan \frac{\theta}{2} = \frac{2}{3} \)

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy