Pregunta
upstudy study bank question image url

If \( \sin \theta=\frac{12}{13}, 0<\theta<\frac{\pi}{2} \), find the exact value of each of the following. \( \begin{array}{lllll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} & \text { (e) } \tan 2 \theta\end{array} \) (f) \( \tan \frac{\theta}{2} \)

Ask by Ball Sandoval. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) sin(2θ) = 120/169 (b) cos(2θ) = –119/169 (c) sin(θ/2) = (2√13)/13 (d) cos(θ/2) = (3√13)/13 (e) tan(2θ) = –120/119 (f) tan(θ/2) = 2/3

Solución

We are given that   sin θ = 12/13  with  0 < θ < π/2. Since θ is in the first quadrant both sin θ and cos θ are positive. Step 1. Find cos θ. Using the Pythagorean identity:   cos θ = √(1 – sin²θ) = √(1 – (12/13)²)        = √(1 – 144/169) = √((169 – 144)/169)        = √(25/169) = 5/13. Now, using the double-angle and half-angle formulas, we compute each expression. ──────────────────────────── (a) sin (2θ) The double-angle formula for sine is:   sin(2θ) = 2 sin θ cos θ. Thus,   sin(2θ) = 2 · (12/13) · (5/13) = 120/169. ──────────────────────────── (b) cos (2θ) One common form of the double-angle formula for cosine is:   cos(2θ) = cos²θ – sin²θ. So,   cos(2θ) = (5/13)² – (12/13)² = (25/169) – (144/169)        = –119/169. It is perfectly acceptable for cos(2θ) to be negative since 2θ falls in the interval (0, π) where cosine can be negative. ──────────────────────────── (c) sin (θ/2) For the half-angle formulas, we have:   sin(θ/2) = √[(1 – cos θ)/2]. Substitute cos θ = 5/13:   sin(θ/2) = √[(1 – 5/13)/2] = √[(8/13)/2] = √(8/26) = √(4/13)        = 2/√13. It is often preferable to rationalize the denominator:   sin(θ/2) = (2√13)/13. ──────────────────────────── (d) cos (θ/2) Similarly, the half-angle formula for cosine is:   cos(θ/2) = √[(1 + cos θ)/2]. Using cos θ = 5/13:   cos(θ/2) = √[(1 + 5/13)/2] = √[(18/13)/2] = √(18/26) = √(9/13)        = 3/√13, or (3√13)/13 after rationalizing. ──────────────────────────── (e) tan (2θ) There are several ways to find tan(2θ). One method is to use:   tan(2θ) = sin(2θ)/cos(2θ). Using our earlier results:   tan(2θ) = (120/169)/(–119/169) = –120/119. ──────────────────────────── (f) tan (θ/2) One useful half-angle formula for tangent is:   tan(θ/2) = sin θ/(1 + cos θ). Substitute sin θ = 12/13 and cos θ = 5/13:   tan(θ/2) = (12/13) / (1 + 5/13) = (12/13) / (18/13)        = 12/18 = 2/3. An alternative half-angle formula is:   tan(θ/2) = √[(1 – cos θ)/(1 + cos θ)], which leads to the same result after simplification. ──────────────────────────── Summary of Answers:   (a) sin (2θ) = 120/169   (b) cos (2θ) = –119/169   (c) sin (θ/2) = (2√13)/13   (d) cos (θ/2) = (3√13)/13   (e) tan (2θ) = –120/119   (f) tan (θ/2) = 2/3

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the problem, we start with the given information: \( \sin \theta = \frac{12}{13} \). We can find \( \cos \theta \) using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). 1. **Find \( \cos \theta \)**: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Therefore, \( \cos \theta = \sqrt{\frac{25}{169}} = \frac{5}{13} \) (since \( 0 < \theta < \frac{\pi}{2} \)). Now we can find the exact values for each part. (a) **Find \( \sin (2\theta) \)**: \[ \sin (2\theta) = 2 \sin \theta \cos \theta = 2 \cdot \frac{12}{13} \cdot \frac{5}{13} = \frac{120}{169} \] (b) **Find \( \cos (2\theta) \)**: Using the identity \( \cos (2\theta) = \cos^2 \theta - \sin^2 \theta \): \[ \cos (2\theta) = \left(\frac{5}{13}\right)^2 - \left(\frac{12}{13}\right)^2 = \frac{25}{169} - \frac{144}{169} = -\frac{119}{169} \] (c) **Find \( \sin \frac{\theta}{2} \)**: Using the half-angle formula \( \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \frac{5}{13}}{2}} = \sqrt{\frac{\frac{8}{13}}{2}} = \sqrt{\frac{8}{26}} = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13} \] (d) **Find \( \cos \frac{\theta}{2} \)**: Using the half-angle formula \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \frac{5}{13}}{2}} = \sqrt{\frac{\frac{18}{13}}{2}} = \sqrt{\frac{18}{26}} = \sqrt{\frac{9}{13}} = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13} \] (e) **Find \( \tan (2\theta) \)**: Using the identity \( \tan (2\theta) = \frac{\sin (2\theta)}{\cos (2\theta)} \): \[ \tan (2\theta) = \frac{\frac{120}{169}}{-\frac{119}{169}} = -\frac{120}{119} \] (f) **Find \( \tan \frac{\theta}{2} \)**: Using the identity \( \tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta} \): \[ \tan \frac{\theta}{2} = \frac{\frac{12}{13}}{1 + \frac{5}{13}} = \frac{\frac{12}{13}}{\frac{18}{13}} = \frac{12}{18} = \frac{2}{3} \] So, the final answers are: - (a) \( \sin (2\theta) = \frac{120}{169} \) - (b) \( \cos (2\theta) = -\frac{119}{169} \) - (c) \( \sin \frac{\theta}{2} = \frac{2\sqrt{13}}{13} \) - (d) \( \cos \frac{\theta}{2} = \frac{3\sqrt{13}}{13} \) - (e) \( \tan (2\theta) = -\frac{120}{119} \) - (f) \( \tan \frac{\theta}{2} = \frac{2}{3} \)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad