Question
upstudy study bank question image url

2.3. Tutorial questions - Slopes of curves D) From first principle= (ie from the definition of the derivative) find \( \begin{array}{lll}\text { (a) } \frac{d y}{d f} \text { if } y=x^{2}+x+1 & \text { (b) } y \text { if } y=\frac{1}{x} & \text { (c) } f^{\prime}(x) \text { if } f(x)=\sqrt{x^{2}+1} \\ \text { (d) } \frac{d(f)}{d t} \text { if } f(t)=\frac{1}{2+\sqrt{t}}\end{array} \)

Ask by Brewer Bradley. in South Africa
Mar 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) \( \frac{dy}{dx} = 2x + 1 \) (b) \( \frac{dy}{dx} = -\frac{1}{x^2} \) (c) \( f'(x) = \frac{x}{\sqrt{x^2 + 1}} \) (d) \( \frac{d(f)}{dt} = -\frac{1}{2\sqrt{t}(2 + \sqrt{t})^2} \)

Solution

(a) For \( y=x^2+x+1 \): - The definition of the derivative is \[ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}. \] - Here, \( f(x)=x^2+x+1 \) so that \[ f(x+h)=(x+h)^2+(x+h)+1=x^2+2xh+h^2+x+h+1. \] - Then, \[ f(x+h)-f(x)=(x^2+2xh+h^2+x+h+1)-(x^2+x+1)=2xh+h^2+h. \] - Dividing by \( h \), \[ \frac{f(x+h)-f(x)}{h}=2x+h+1. \] - Taking the limit \( h\to 0 \), \[ \frac{dy}{dx}=2x+1. \] --- (b) For \( y=\frac{1}{x} \): - Using the definition with \( f(x)=\frac{1}{x} \) and \( f(x+h)=\frac{1}{x+h} \), \[ f(x+h)-f(x)=\frac{1}{x+h}-\frac{1}{x}=\frac{x-(x+h)}{x(x+h)}=\frac{-h}{x(x+h)}. \] - Thus, \[ \frac{f(x+h)-f(x)}{h}=\frac{-h}{h\,x(x+h)}=\frac{-1}{x(x+h)}. \] - Taking the limit \( h\to 0 \), \[ \frac{dy}{dx}=-\frac{1}{x^2}. \] --- (c) For \( f(x)=\sqrt{x^2+1} \): - We have \[ f(x+h)=\sqrt{(x+h)^2+1}=\sqrt{x^2+2xh+h^2+1}. \] - Then the difference quotient is \[ \frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}{h}. \] - Multiply the numerator and the denominator by the conjugate \(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\): \[ \frac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}{h} \cdot \frac{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}. \] - The numerator becomes \[ (x^2+2xh+h^2+1)-(x^2+1)=2xh+h^2. \] - Therefore, \[ \frac{2xh+h^2}{h\Bigl(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\Bigr)}=\frac{h(2x+h)}{h\Bigl(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\Bigr)}. \] - Cancel \( h \): \[ \frac{2x+h}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}. \] - Taking \( h\to 0 \) gives \[ f'(x)=\frac{2x}{2\sqrt{x^2+1}}=\frac{x}{\sqrt{x^2+1}}. \] --- (d) For \( f(t)=\frac{1}{2+\sqrt{t}} \): - Here, \( f(t)=\frac{1}{2+\sqrt{t}} \) and \[ f(t+h)=\frac{1}{2+\sqrt{t+h}}. \] - Thus, \[ f(t+h)-f(t)=\frac{1}{2+\sqrt{t+h}}-\frac{1}{2+\sqrt{t}}. \] - Write this as a single fraction: \[ \frac{(2+\sqrt{t})-(2+\sqrt{t+h})}{(2+\sqrt{t+h})(2+\sqrt{t})}=\frac{\sqrt{t}-\sqrt{t+h}}{(2+\sqrt{t+h})(2+\sqrt{t})}. \] - The difference quotient is then \[ \frac{f(t+h)-f(t)}{h}=\frac{\sqrt{t}-\sqrt{t+h}}{h\,(2+\sqrt{t+h})(2+\sqrt{t})}. \] - Multiply numerator and denominator by the conjugate \(\sqrt{t}+\sqrt{t+h}\) to simplify: \[ (\sqrt{t}-\sqrt{t+h})(\sqrt{t}+\sqrt{t+h})=t-(t+h)=-h. \] - So we have \[ \frac{-h}{h\,(2+\sqrt{t+h})(2+\sqrt{t})(\sqrt{t}+\sqrt{t+h})}. \] - Cancel \( h \): \[ \frac{-1}{(2+\sqrt{t+h})(2+\sqrt{t})(\sqrt{t}+\sqrt{t+h})}. \] - Now, taking the limit \( h\to 0 \) (note that \(\sqrt{t+h}\to\sqrt{t}\)): \[ f'(t)=\frac{-1}{(2+\sqrt{t})^2\,(2\sqrt{t})}. \] - Therefore, \[ \frac{d(f)}{dt}=-\frac{1}{2\sqrt{t}(2+\sqrt{t})^2}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find the derivatives using the definition of the derivative from first principles, we'll apply the limit definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### (a) For \( y = x^2 + x + 1 \): Using the above definition, calculate: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 1 - (x^2 + x + 1)}{h} \] Simplifying leads to: \[ = \lim_{h \to 0} \frac{2xh + h^2 + h}{h} = \lim_{h \to 0} (2x + h + 1) = 2x + 1 \] ### (b) For \( y = \frac{1}{x} \): Using the definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \] This simplifies to: \[ = \lim_{h \to 0} \frac{-h}{h(x+h)x} = -\frac{1}{x^2} \] ### (c) For \( f(x) = \sqrt{x^2 + 1} \): The derivative is: \[ \frac{df}{dx} = \lim_{h \to 0} \frac{\sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1}}{h} \] Rationalizing gives: \[ = \lim_{h \to 0} \frac{((x+h)^2 + 1) - (x^2 + 1)}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \lim_{h \to 0} \frac{2xh + h^2}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \frac{x}{\sqrt{x^2 + 1}} \] ### (d) For \( f(t) = \frac{1}{2 + \sqrt{t}} \): Using the first principle: \[ \frac{d(f)}{dt} = \lim_{h \to 0} \frac{\frac{1}{2 + \sqrt{t+h}} - \frac{1}{2 + \sqrt{t}}}{h} \] This simplifies with common denominators to: \[ = \lim_{h \to 0} \frac{\sqrt{t} - \sqrt{t + h}}{h(2 + \sqrt{t})(2 + \sqrt{t + h})} = \frac{-1}{2 + \sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = -\frac{1}{(2 + \sqrt{t})^2 \cdot 2\sqrt{t}} \] Each of these operations ultimately gives you the slopes of the respective curves at any point \( x \) or \( t \). Happy calculating!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy