2.3. Tutorial questions - Slopes of curves D) From first principle= (ie from the definition of the derivative) find \( \begin{array}{lll}\text { (a) } \frac{d y}{d f} \text { if } y=x^{2}+x+1 & \text { (b) } y \text { if } y=\frac{1}{x} & \text { (c) } f^{\prime}(x) \text { if } f(x)=\sqrt{x^{2}+1} \\ \text { (d) } \frac{d(f)}{d t} \text { if } f(t)=\frac{1}{2+\sqrt{t}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the derivatives using the definition of the derivative from first principles, we'll apply the limit definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### (a) For \( y = x^2 + x + 1 \): Using the above definition, calculate: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 1 - (x^2 + x + 1)}{h} \] Simplifying leads to: \[ = \lim_{h \to 0} \frac{2xh + h^2 + h}{h} = \lim_{h \to 0} (2x + h + 1) = 2x + 1 \] ### (b) For \( y = \frac{1}{x} \): Using the definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \] This simplifies to: \[ = \lim_{h \to 0} \frac{-h}{h(x+h)x} = -\frac{1}{x^2} \] ### (c) For \( f(x) = \sqrt{x^2 + 1} \): The derivative is: \[ \frac{df}{dx} = \lim_{h \to 0} \frac{\sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1}}{h} \] Rationalizing gives: \[ = \lim_{h \to 0} \frac{((x+h)^2 + 1) - (x^2 + 1)}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \lim_{h \to 0} \frac{2xh + h^2}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \frac{x}{\sqrt{x^2 + 1}} \] ### (d) For \( f(t) = \frac{1}{2 + \sqrt{t}} \): Using the first principle: \[ \frac{d(f)}{dt} = \lim_{h \to 0} \frac{\frac{1}{2 + \sqrt{t+h}} - \frac{1}{2 + \sqrt{t}}}{h} \] This simplifies with common denominators to: \[ = \lim_{h \to 0} \frac{\sqrt{t} - \sqrt{t + h}}{h(2 + \sqrt{t})(2 + \sqrt{t + h})} = \frac{-1}{2 + \sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = -\frac{1}{(2 + \sqrt{t})^2 \cdot 2\sqrt{t}} \] Each of these operations ultimately gives you the slopes of the respective curves at any point \( x \) or \( t \). Happy calculating!
preguntas relacionadas
