Pregunta
upstudy study bank question image url

2.3. Tutorial questions - Slopes of curves D) From first principle= (ie from the definition of the derivative) find \( \begin{array}{lll}\text { (a) } \frac{d y}{d f} \text { if } y=x^{2}+x+1 & \text { (b) } y \text { if } y=\frac{1}{x} & \text { (c) } f^{\prime}(x) \text { if } f(x)=\sqrt{x^{2}+1} \\ \text { (d) } \frac{d(f)}{d t} \text { if } f(t)=\frac{1}{2+\sqrt{t}}\end{array} \)

Ask by Brewer Bradley. in South Africa
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( \frac{dy}{dx} = 2x + 1 \) (b) \( \frac{dy}{dx} = -\frac{1}{x^2} \) (c) \( f'(x) = \frac{x}{\sqrt{x^2 + 1}} \) (d) \( \frac{d(f)}{dt} = -\frac{1}{2\sqrt{t}(2 + \sqrt{t})^2} \)

Solución

(a) For \( y=x^2+x+1 \): - The definition of the derivative is \[ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}. \] - Here, \( f(x)=x^2+x+1 \) so that \[ f(x+h)=(x+h)^2+(x+h)+1=x^2+2xh+h^2+x+h+1. \] - Then, \[ f(x+h)-f(x)=(x^2+2xh+h^2+x+h+1)-(x^2+x+1)=2xh+h^2+h. \] - Dividing by \( h \), \[ \frac{f(x+h)-f(x)}{h}=2x+h+1. \] - Taking the limit \( h\to 0 \), \[ \frac{dy}{dx}=2x+1. \] --- (b) For \( y=\frac{1}{x} \): - Using the definition with \( f(x)=\frac{1}{x} \) and \( f(x+h)=\frac{1}{x+h} \), \[ f(x+h)-f(x)=\frac{1}{x+h}-\frac{1}{x}=\frac{x-(x+h)}{x(x+h)}=\frac{-h}{x(x+h)}. \] - Thus, \[ \frac{f(x+h)-f(x)}{h}=\frac{-h}{h\,x(x+h)}=\frac{-1}{x(x+h)}. \] - Taking the limit \( h\to 0 \), \[ \frac{dy}{dx}=-\frac{1}{x^2}. \] --- (c) For \( f(x)=\sqrt{x^2+1} \): - We have \[ f(x+h)=\sqrt{(x+h)^2+1}=\sqrt{x^2+2xh+h^2+1}. \] - Then the difference quotient is \[ \frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}{h}. \] - Multiply the numerator and the denominator by the conjugate \(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\): \[ \frac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}{h} \cdot \frac{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}. \] - The numerator becomes \[ (x^2+2xh+h^2+1)-(x^2+1)=2xh+h^2. \] - Therefore, \[ \frac{2xh+h^2}{h\Bigl(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\Bigr)}=\frac{h(2x+h)}{h\Bigl(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\Bigr)}. \] - Cancel \( h \): \[ \frac{2x+h}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}. \] - Taking \( h\to 0 \) gives \[ f'(x)=\frac{2x}{2\sqrt{x^2+1}}=\frac{x}{\sqrt{x^2+1}}. \] --- (d) For \( f(t)=\frac{1}{2+\sqrt{t}} \): - Here, \( f(t)=\frac{1}{2+\sqrt{t}} \) and \[ f(t+h)=\frac{1}{2+\sqrt{t+h}}. \] - Thus, \[ f(t+h)-f(t)=\frac{1}{2+\sqrt{t+h}}-\frac{1}{2+\sqrt{t}}. \] - Write this as a single fraction: \[ \frac{(2+\sqrt{t})-(2+\sqrt{t+h})}{(2+\sqrt{t+h})(2+\sqrt{t})}=\frac{\sqrt{t}-\sqrt{t+h}}{(2+\sqrt{t+h})(2+\sqrt{t})}. \] - The difference quotient is then \[ \frac{f(t+h)-f(t)}{h}=\frac{\sqrt{t}-\sqrt{t+h}}{h\,(2+\sqrt{t+h})(2+\sqrt{t})}. \] - Multiply numerator and denominator by the conjugate \(\sqrt{t}+\sqrt{t+h}\) to simplify: \[ (\sqrt{t}-\sqrt{t+h})(\sqrt{t}+\sqrt{t+h})=t-(t+h)=-h. \] - So we have \[ \frac{-h}{h\,(2+\sqrt{t+h})(2+\sqrt{t})(\sqrt{t}+\sqrt{t+h})}. \] - Cancel \( h \): \[ \frac{-1}{(2+\sqrt{t+h})(2+\sqrt{t})(\sqrt{t}+\sqrt{t+h})}. \] - Now, taking the limit \( h\to 0 \) (note that \(\sqrt{t+h}\to\sqrt{t}\)): \[ f'(t)=\frac{-1}{(2+\sqrt{t})^2\,(2\sqrt{t})}. \] - Therefore, \[ \frac{d(f)}{dt}=-\frac{1}{2\sqrt{t}(2+\sqrt{t})^2}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the derivatives using the definition of the derivative from first principles, we'll apply the limit definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### (a) For \( y = x^2 + x + 1 \): Using the above definition, calculate: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 1 - (x^2 + x + 1)}{h} \] Simplifying leads to: \[ = \lim_{h \to 0} \frac{2xh + h^2 + h}{h} = \lim_{h \to 0} (2x + h + 1) = 2x + 1 \] ### (b) For \( y = \frac{1}{x} \): Using the definition: \[ \frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \] This simplifies to: \[ = \lim_{h \to 0} \frac{-h}{h(x+h)x} = -\frac{1}{x^2} \] ### (c) For \( f(x) = \sqrt{x^2 + 1} \): The derivative is: \[ \frac{df}{dx} = \lim_{h \to 0} \frac{\sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1}}{h} \] Rationalizing gives: \[ = \lim_{h \to 0} \frac{((x+h)^2 + 1) - (x^2 + 1)}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \lim_{h \to 0} \frac{2xh + h^2}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})} = \frac{x}{\sqrt{x^2 + 1}} \] ### (d) For \( f(t) = \frac{1}{2 + \sqrt{t}} \): Using the first principle: \[ \frac{d(f)}{dt} = \lim_{h \to 0} \frac{\frac{1}{2 + \sqrt{t+h}} - \frac{1}{2 + \sqrt{t}}}{h} \] This simplifies with common denominators to: \[ = \lim_{h \to 0} \frac{\sqrt{t} - \sqrt{t + h}}{h(2 + \sqrt{t})(2 + \sqrt{t + h})} = \frac{-1}{2 + \sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = -\frac{1}{(2 + \sqrt{t})^2 \cdot 2\sqrt{t}} \] Each of these operations ultimately gives you the slopes of the respective curves at any point \( x \) or \( t \). Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad