c) If \( 2 \tan 2 \theta=-\sqrt{5} \) with \( 0^{\circ}<2 \theta<180^{\circ} \), determine the value of the following without th of a calculator and with the aid of a diagram: \( \begin{array}{ll}\text { (1) } \sin 2 \theta & \text { (2) } \sin \theta \cos \theta \\ \text { (4) } \cos \theta & \end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To solve the equation \( 2 \tan 2\theta = -\sqrt{5} \), we first have: \[ \tan 2\theta = -\frac{\sqrt{5}}{2}. \] This tells us that \( 2\theta \) lies in the second quadrant, where tangent is negative. We can find \( 2\theta \) by using the reference angle technique. The reference angle when \( \tan^{-1}\left(\frac{\sqrt{5}}{2}\right) \) is calculated to find an angle \( \alpha \). Therefore, we have: \[ 2\theta = 180^\circ - \alpha. \] From this relationship, we can find \(\sin 2\theta\): 1. When \( 2\theta = 180^\circ - \alpha\), we use: \[ \sin 2\theta = \sin (180^\circ - \alpha) = \sin \alpha. \] Given that \(\tan \alpha = \frac{\sqrt{5}}{2}\), we can use the Pythagorean identity to find \(\sin \alpha\): \[ \sin^2 \alpha + \cos^2 \alpha = 1, \] where \(\sin \alpha = \frac{\sqrt{5}}{\sqrt{5^2 + 2^2}} = \frac{\sqrt{5}}{\sqrt{25 + 4}} = \frac{\sqrt{5}}{\sqrt{29}}.\) Thus: \[ \sin 2\theta = \frac{\sqrt{5}}{\sqrt{29}}. \] 2. The next part involves finding \(\sin \theta \cos \theta\). We can utilize the identity: \[ \sin 2\theta = 2 \sin \theta \cos \theta. \] So: \[ 2 \sin \theta \cos \theta = \frac{\sqrt{5}}{\sqrt{29}} \implies \sin \theta \cos \theta = \frac{\sqrt{5}}{2\sqrt{29}}. \] 3. Finally, we need to determine \( \cos \theta \). Since \( \tan 2\theta = -\frac{\sqrt{5}}{2}\), and we know \(\sin 2\theta\), we can find \(\cos 2\theta\): \[ \cos 2\theta = -\frac{2}{\sqrt{29}} \quad \text{(since } \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}). \] Then using the half-angle identity: \[ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} = \frac{1 - \frac{2}{\sqrt{29}}}{2} = \frac{\sqrt{29} - 2}{2\sqrt{29}}. \] By calculating square roots, we find \(\cos \theta\). Thus the values are: 1. \( \sin 2 \theta = \frac{\sqrt{5}}{\sqrt{29}} \) 2. \( \sin \theta \cos \theta = \frac{\sqrt{5}}{2\sqrt{29}} \) 3. \( \cos \theta = \text{found from half-angle identity} \) clarifies the relationship depending on quadrant constraints.