Pregunta
upstudy study bank question image url

c) If \( 2 \tan 2 \theta=-\sqrt{5} \) with \( 0^{\circ}<2 \theta<180^{\circ} \), determine the value of the following without th of a calculator and with the aid of a diagram: \( \begin{array}{ll}\text { (1) } \sin 2 \theta & \text { (2) } \sin \theta \cos \theta \\ \text { (4) } \cos \theta & \end{array} \)

Ask by Gough Black. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \begin{array}{ll} (1) & \sin 2\theta = -\frac{4\sqrt{5}}{9} \\ (2) & \sin \theta \cos \theta = -\frac{2\sqrt{5}}{9} \\ (4) & \cos \theta = \frac{\sqrt{5}}{3} \\ \end{array} \]

Solución

To solve the problem, we start with the equation given: \[ 2 \tan 2\theta = -\sqrt{5} \] From this, we can express \(\tan 2\theta\): \[ \tan 2\theta = -\frac{\sqrt{5}}{2} \] ### Step 1: Determine the angle \(2\theta\) Since \(0^{\circ} < 2\theta < 180^{\circ}\), we know that \(2\theta\) is in the first or second quadrant. The tangent function is negative in the second quadrant. Therefore, we can find \(2\theta\) as follows: Let \(2\theta = 180^{\circ} - \alpha\), where \(\tan \alpha = \frac{\sqrt{5}}{2}\). To find \(\alpha\), we can use the tangent inverse: \[ \alpha = \tan^{-1}\left(\frac{\sqrt{5}}{2}\right) \] Thus, \[ 2\theta = 180^{\circ} - \alpha \] ### Step 2: Calculate \(\sin 2\theta\) Using the identity for sine in terms of tangent: \[ \sin 2\theta = \frac{2 \tan 2\theta}{1 + \tan^2 2\theta} \] First, we calculate \(\tan^2 2\theta\): \[ \tan^2 2\theta = \left(-\frac{\sqrt{5}}{2}\right)^2 = \frac{5}{4} \] Now substituting into the sine formula: \[ \sin 2\theta = \frac{2 \left(-\frac{\sqrt{5}}{2}\right)}{1 + \frac{5}{4}} = \frac{-\sqrt{5}}{\frac{9}{4}} = -\frac{4\sqrt{5}}{9} \] ### Step 3: Calculate \(\sin \theta \cos \theta\) Using the double angle identity: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Thus, \[ \sin \theta \cos \theta = \frac{\sin 2\theta}{2} = \frac{-\frac{4\sqrt{5}}{9}}{2} = -\frac{2\sqrt{5}}{9} \] ### Step 4: Calculate \(\cos \theta\) Using the identity: \[ \cos^2 2\theta + \sin^2 2\theta = 1 \] We already have \(\sin 2\theta\), so we can find \(\cos 2\theta\): \[ \cos 2\theta = \sqrt{1 - \sin^2 2\theta} = \sqrt{1 - \left(-\frac{4\sqrt{5}}{9}\right)^2} \] Calculating \(\sin^2 2\theta\): \[ \sin^2 2\theta = \left(-\frac{4\sqrt{5}}{9}\right)^2 = \frac{80}{81} \] Now substituting back: \[ \cos 2\theta = \sqrt{1 - \frac{80}{81}} = \sqrt{\frac{1}{81}} = \frac{1}{9} \] Using the double angle formula for cosine: \[ \cos 2\theta = 2 \cos^2 \theta - 1 \] Setting this equal to \(\frac{1}{9}\): \[ 2 \cos^2 \theta - 1 = \frac{1}{9} \] Solving for \(\cos^2 \theta\): \[ 2 \cos^2 \theta = \frac{1}{9} + 1 = \frac{10}{9} \] \[ \cos^2 \theta = \frac{5}{9} \] Thus, \[ \cos \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Summary of Results 1. \(\sin 2\theta = -\frac{4\sqrt{5}}{9}\) 2. \(\sin \theta \cos \theta = -\frac{2\sqrt{5}}{9}\) 3. \(\cos \theta = \frac{\sqrt{5}}{3}\) Final answers: \[ \begin{array}{ll} (1) & \sin 2\theta = -\frac{4\sqrt{5}}{9} \\ (2) & \sin \theta \cos \theta = -\frac{2\sqrt{5}}{9} \\ (4) & \cos \theta = \frac{\sqrt{5}}{3} \\ \end{array} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( 2 \tan 2\theta = -\sqrt{5} \), we first have: \[ \tan 2\theta = -\frac{\sqrt{5}}{2}. \] This tells us that \( 2\theta \) lies in the second quadrant, where tangent is negative. We can find \( 2\theta \) by using the reference angle technique. The reference angle when \( \tan^{-1}\left(\frac{\sqrt{5}}{2}\right) \) is calculated to find an angle \( \alpha \). Therefore, we have: \[ 2\theta = 180^\circ - \alpha. \] From this relationship, we can find \(\sin 2\theta\): 1. When \( 2\theta = 180^\circ - \alpha\), we use: \[ \sin 2\theta = \sin (180^\circ - \alpha) = \sin \alpha. \] Given that \(\tan \alpha = \frac{\sqrt{5}}{2}\), we can use the Pythagorean identity to find \(\sin \alpha\): \[ \sin^2 \alpha + \cos^2 \alpha = 1, \] where \(\sin \alpha = \frac{\sqrt{5}}{\sqrt{5^2 + 2^2}} = \frac{\sqrt{5}}{\sqrt{25 + 4}} = \frac{\sqrt{5}}{\sqrt{29}}.\) Thus: \[ \sin 2\theta = \frac{\sqrt{5}}{\sqrt{29}}. \] 2. The next part involves finding \(\sin \theta \cos \theta\). We can utilize the identity: \[ \sin 2\theta = 2 \sin \theta \cos \theta. \] So: \[ 2 \sin \theta \cos \theta = \frac{\sqrt{5}}{\sqrt{29}} \implies \sin \theta \cos \theta = \frac{\sqrt{5}}{2\sqrt{29}}. \] 3. Finally, we need to determine \( \cos \theta \). Since \( \tan 2\theta = -\frac{\sqrt{5}}{2}\), and we know \(\sin 2\theta\), we can find \(\cos 2\theta\): \[ \cos 2\theta = -\frac{2}{\sqrt{29}} \quad \text{(since } \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}). \] Then using the half-angle identity: \[ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} = \frac{1 - \frac{2}{\sqrt{29}}}{2} = \frac{\sqrt{29} - 2}{2\sqrt{29}}. \] By calculating square roots, we find \(\cos \theta\). Thus the values are: 1. \( \sin 2 \theta = \frac{\sqrt{5}}{\sqrt{29}} \) 2. \( \sin \theta \cos \theta = \frac{\sqrt{5}}{2\sqrt{29}} \) 3. \( \cos \theta = \text{found from half-angle identity} \) clarifies the relationship depending on quadrant constraints.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad