Question

\( \int _{}^{}\frac{\sec (x)^{3}}{\tan (x)} d x \)

Ask by Brooks Luna. in Turkey
Jan 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \int \frac{\sec^3(x)}{\tan(x)} \, dx = \sec(x) + \frac{1}{2} \ln \left| \frac{1 + \cos(x)}{1 - \cos(x)} \right| + C \]

Solution

لحساب التكامل التالي: \[ \int \frac{\sec^3(x)}{\tan(x)} \, dx \] نتبع الخطوات التالية: 1. **تبسيط التكامل باستخدام الهوية المثلثية:** \[ \frac{\sec^3(x)}{\tan(x)} = \frac{1}{\cos^3(x)} \cdot \frac{\cos(x)}{\sin(x)} = \frac{1}{\cos^2(x) \sin(x)} = \frac{\sec^2(x)}{\sin(x)} \] إذن التكامل يصبح: \[ \int \frac{\sec^2(x)}{\sin(x)} \, dx \] 2. **استخدام تغيير المتغيرات:** لنفرض أن \( u = \cos(x) \)، إذًا: \[ du = -\sin(x) \, dx \quad \Rightarrow \quad dx = -\frac{du}{\sin(x)} \] عند التعويض في التكامل: \[ \int \frac{\sec^2(x)}{\sin(x)} \, dx = \int \frac{1}{\cos^2(x) \sin(x)} \cdot \left( -\frac{du}{\sin(x)} \right ) = -\int \frac{1}{u^2 (1 - u^2)} \, du \] 3. **تحليل الكسر إلى كسور جزئية:** \[ \frac{1}{u^2 (1 - u^2)} = \frac{1}{u^2 (1 - u)(1 + u)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{1 - u} + \frac{D}{1 + u} \] من خلال حل المعادلات نحصل على: \[ A = 0, \quad B = 1, \quad C = \frac{1}{2}, \quad D = \frac{1}{2} \] إذن: \[ \frac{1}{u^2 (1 - u^2)} = \frac{1}{u^2} + \frac{1}{2} \left( \frac{1}{1 - u} + \frac{1}{1 + u} \right ) \] 4. **إجراء التكامل:** \[ -\int \left( \frac{1}{u^2} + \frac{1}{2} \left( \frac{1}{1 - u} + \frac{1}{1 + u} \right ) \right ) du = -\left( -\frac{1}{u} + \frac{1}{2} \ln|1 - u| - \frac{1}{2} \ln|1 + u| \right ) + C \] وبتبسيط النتيجة: \[ \frac{1}{u} - \frac{1}{2} \ln|1 - u| + \frac{1}{2} \ln|1 + u| + C \] 5. **إعادة المتغير الأصلي \( u = \cos(x) \):** \[ \sec(x) + \frac{1}{2} \ln \left| \frac{1 + \cos(x)}{1 - \cos(x)} \right| + C \] **إذن، الحل النهائي للتكامل هو:** \[ \int \frac{\sec^3(x)}{\tan(x)} \, dx = \sec(x) + \frac{1}{2} \ln \left| \frac{1 + \cos(x)}{1 - \cos(x)} \right| + C \] حيث \( C \) هو ثابت التكامل.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve \( \int \frac{\sec^3(x)}{\tan(x)} \, dx \), we can use a substitution. Let \( u = \tan(x) \). Then, the derivative \( du = \sec^2(x) \, dx \), and we can express \( \sec^3(x) \) in terms of \( u \): \( \sec^3(x) = (1 + u^2)^{3/2} \). The integral transforms into \( \int \frac{\sec^3(x)}{u} \, du \), which can be simplified further. Now, evaluate the integral: \[ \int \sec^3(x) \, \frac{du}{u} \] where you'll likely end up with logarithmic expressions after integration. Alternatively, express \( \sec^3(x) \) as \( \sec^2(x) \sec(x) \) and simplify accordingly to arrive at a solution. As you integrate, keep track of constants and remember to back-substitute \( u = \tan(x) \) at the end to express in terms of \( x \). Would you like help walking through the actual integration process?

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy