Evaluate the following integral or state that it diverges. \( \int_{3}^{\infty} \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) d x \) Select the correct choice and, if necessary, fill in the answer box to complete your choice. A. The improper integral converges and \( \int_{3}^{\infty} \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) d x=\square \). (Type an exact answer, using \( \pi \) and radicals as needed.)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To evaluate the integral \[ \int_{3}^{\infty} \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) dx, \] we can analyze the behavior of the integrand as \( x \to \infty \). For large \( x \), we can use the approximation \( \sin \left(\frac{\pi}{x}\right) \approx \frac{\pi}{x} \). Thus, the integral can be approximated by: \[ \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) \approx \frac{8}{x^{2}} \cdot \frac{\pi}{x} = \frac{8\pi}{x^{3}}. \] Now consider the improper integral: \[ \int_{3}^{\infty} \frac{8\pi}{x^{3}} dx. \] Calculating this gives: \[ \int_{3}^{\infty} \frac{8\pi}{x^{3}} dx = 8\pi \left[-\frac{1}{2x^{2}}\right]_{3}^{\infty} = 8\pi \cdot 0 - 8\pi \cdot \left(-\frac{1}{2 \cdot 3^{2}}\right) = \frac{8\pi}{18} = \frac{4\pi}{9}. \] Since the integral of \( \frac{8\pi}{x^{3}} \) converges, by comparison, we can conclude that \[ \int_{3}^{\infty} \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) dx \] also converges. Therefore, the answer is: A. The improper integral converges and \[ \int_{3}^{\infty} \frac{8}{x^{2}} \sin \left(\frac{\pi}{x}\right) dx=\frac{4\pi}{9}. \]