Question
upstudy study bank question image url

QUESTION I Torm \{ 2 ons 1.1 Solvo formi \( 1.114 x^{2}=16 \) \( 1.125 x^{2}-8 x+1=0 \quad \) (Correct \( t o \mathrm{ONB} \) decimal) \( 1.133 x-6=9-\sqrt{2 x+1} \) (6) \( 1.1 .4(x+7)(x-1) \leq 48 \) \( 1.15 x^{\frac{2}{3}}-2 x^{\frac{1}{3}}=15 \) (5) 12 Solve for \( x \) and \( y \) simultaneously in the equations below: \[ 3 y-x=11 \text { and } x^{2}-x y=y^{2}+1 \] 1.3 Determine the value(s) of \( t \) for which \( -2 x^{2}+4 t x+t=0 \) will have non-real roots. (3) [28]

Ask by Ellis Chang. in South Africa
Mar 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. **Solutions for \( x \):** - \( x^{2} = 16 \): \( x = -4 \) or \( x = 4 \) - \( x^{2} - 8x + 1 = 0 \): \( x = 4 - \sqrt{15} \) or \( x = 4 + \sqrt{15} \) - \( x - 6 = 9 - \sqrt{2x + 1} \): \( x = 16 - 4\sqrt{2} \) or \( x = 16 + 4\sqrt{2} \) - \( (x + 7)(x - 1) \leq 48 \): \( -11 \leq x \leq 5 \) - \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \): \( x = 125 \) 2. **Simultaneous Equations:** - \( 3y - x = 11 \) and \( x^2 - xy = y^2 + 1 \): Solutions are \( (x, y) = (-2, 3) \) and \( (13, 8) \) 3. **Value of \( t \) for Non-Real Roots:** - \( -2x^{2} + 4tx + t = 0 \): \( t \) must be between \( -\frac{1}{2} \) and \( 0 \) for non-real roots.

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(x-6=9\) - step1: Move the constant to the right side: \(x=9+6\) - step2: Add the numbers: \(x=15\) Solve the equation \( x^{2}=16 \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(x^{2}=16\) - step1: Simplify the expression: \(x=\pm \sqrt{16}\) - step2: Simplify the expression: \(x=\pm 4\) - step3: Separate into possible cases: \(\begin{align}&x=4\\&x=-4\end{align}\) - step4: Rewrite: \(x_{1}=-4,x_{2}=4\) Solve the equation \( x^{2}-8 x+1=0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x^{2}-8x+1=0\) - step1: Solve using the quadratic formula: \(x=\frac{8\pm \sqrt{\left(-8\right)^{2}-4}}{2}\) - step2: Simplify the expression: \(x=\frac{8\pm \sqrt{60}}{2}\) - step3: Simplify the expression: \(x=\frac{8\pm 2\sqrt{15}}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{8+2\sqrt{15}}{2}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=4+\sqrt{15}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=4+\sqrt{15}\\&x=4-\sqrt{15}\end{align}\) - step7: Rewrite: \(x_{1}=4-\sqrt{15},x_{2}=4+\sqrt{15}\) Solve the equation \( x^{\frac{2}{3}}-2 x^{\frac{1}{3}}=15 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x^{\frac{2}{3}}-2x^{\frac{1}{3}}=15\) - step1: Move the expression to the left side: \(x^{\frac{2}{3}}-2x^{\frac{1}{3}}-15=0\) - step2: Solve using substitution: \(t^{2}-2t-15=0\) - step3: Factor the expression: \(\left(t-5\right)\left(t+3\right)=0\) - step4: Separate into possible cases: \(\begin{align}&t-5=0\\&t+3=0\end{align}\) - step5: Solve the equation: \(\begin{align}&t=5\\&t=-3\end{align}\) - step6: Substitute back: \(\begin{align}&x^{\frac{1}{3}}=5\\&x^{\frac{1}{3}}=-3\end{align}\) - step7: Solve the equation for \(x:\) \(\begin{align}&x=125\\&x=-27\end{align}\) - step8: Rewrite: \(x_{1}=-27,x_{2}=125\) Solve the equation \( (x+7)(x-1) \leq 48 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\left(x+7\right)\left(x-1\right)\leq 48\) - step1: Move the expression to the left side: \(\left(x+7\right)\left(x-1\right)-48\leq 0\) - step2: Subtract the terms: \(x^{2}+6x-55\leq 0\) - step3: Rewrite the expression: \(x^{2}+6x-55=0\) - step4: Factor the expression: \(\left(x-5\right)\left(x+11\right)=0\) - step5: Separate into possible cases: \(\begin{align}&x-5=0\\&x+11=0\end{align}\) - step6: Solve the equation: \(\begin{align}&x=5\\&x=-11\end{align}\) - step7: Determine the test intervals: \(\begin{align}&x<-11\\&-115\end{align}\) - step8: Choose a value: \(\begin{align}&x_{1}=-12\\&x_{2}=-3\\&x_{3}=6\end{align}\) - step9: Test the chosen value: \(\begin{align}&x<-11\textrm{ }\textrm{is not a solution}\\&-115\textrm{ }\textrm{is not a solution}\end{align}\) - step10: Include the critical value: \(\begin{align}&-11\leq x\leq 5\textrm{ }\textrm{is the solution}\end{align}\) - step11: The final solution is \(-11\leq x\leq 5:\) \(-11\leq x\leq 5\) Solve the system of equations \( 3 y-x=11;x^{2}-x y=y^{2}+1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}3y-x=11\\x^{2}-xy=y^{2}+1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-11+3y\\x^{2}-xy=y^{2}+1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left(-11+3y\right)^{2}-\left(-11+3y\right)y=y^{2}+1\) - step3: Simplify: \(121-55y+6y^{2}=y^{2}+1\) - step4: Move the expression to the left side: \(121-55y+6y^{2}-\left(y^{2}+1\right)=0\) - step5: Calculate: \(120-55y+5y^{2}=0\) - step6: Factor the expression: \(5\left(8-y\right)\left(3-y\right)=0\) - step7: Divide the terms: \(\left(8-y\right)\left(3-y\right)=0\) - step8: Separate into possible cases: \(\begin{align}&8-y=0\\&3-y=0\end{align}\) - step9: Solve the equation: \(\begin{align}&y=8\\&y=3\end{align}\) - step10: Calculate: \(y=8\cup y=3\) - step11: Rearrange the terms: \(\left\{ \begin{array}{l}x=-11+3y\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-11+3y\\y=3\end{array}\right.\) - step12: Calculate: \(\left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\) - step13: Calculate: \(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\) - step15: Rewrite: \(\left(x,y\right) = \left(-2,3\right)\cup \left(x,y\right) = \left(13,8\right)\) Solve the equation \( -2 x^{2}+4 t x+t=0 \). Solve the equation by following steps: - step0: Solve for \(t\): \(-2x^{2}+4tx+t=0\) - step1: Rewrite the expression: \(-2x^{2}+4xt+t=0\) - step2: Collect like terms: \(-2x^{2}+\left(4x+1\right)t=0\) - step3: Move the constant to the right side: \(\left(4x+1\right)t=0+2x^{2}\) - step4: Remove 0: \(\left(4x+1\right)t=2x^{2}\) - step5: Divide both sides: \(\frac{\left(4x+1\right)t}{4x+1}=\frac{2x^{2}}{4x+1}\) - step6: Divide the numbers: \(t=\frac{2x^{2}}{4x+1}\) Let's solve the problems step by step. ### 1. Solve for \( x \) #### 1.1 Solve \( x^{2} = 16 \) To solve this equation, we take the square root of both sides: \[ x = \pm 4 \] Thus, the solutions are: \[ x_{1} = -4, \quad x_{2} = 4 \] #### 1.2 Solve \( x^{2} - 8x + 1 = 0 \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -8, c = 1 \). Calculating the discriminant: \[ D = b^2 - 4ac = (-8)^2 - 4 \cdot 1 \cdot 1 = 64 - 4 = 60 \] Now applying the quadratic formula: \[ x = \frac{8 \pm \sqrt{60}}{2} = \frac{8 \pm 2\sqrt{15}}{2} = 4 \pm \sqrt{15} \] Thus, the solutions are: \[ x_{1} = 4 - \sqrt{15}, \quad x_{2} = 4 + \sqrt{15} \quad (\text{approximately } x_{1} \approx 0.127, x_{2} \approx 7.873) \] #### 1.3 Solve \( x - 6 = 9 - \sqrt{2x + 1} \) Rearranging gives: \[ \sqrt{2x + 1} = 9 - (x - 6) = 15 - x \] Squaring both sides: \[ 2x + 1 = (15 - x)^2 \] \[ 2x + 1 = 225 - 30x + x^2 \] \[ x^2 - 32x + 224 = 0 \] Using the quadratic formula: \[ D = (-32)^2 - 4 \cdot 1 \cdot 224 = 1024 - 896 = 128 \] \[ x = \frac{32 \pm \sqrt{128}}{2} = \frac{32 \pm 8\sqrt{2}}{2} = 16 \pm 4\sqrt{2} \] Thus, the solutions are: \[ x_{1} = 16 - 4\sqrt{2}, \quad x_{2} = 16 + 4\sqrt{2} \] #### 1.4 Solve \( (x + 7)(x - 1) \leq 48 \) First, we expand and rearrange: \[ x^2 + 6x - 48 \leq 0 \] Finding the roots: \[ x^2 + 6x - 48 = 0 \] Using the quadratic formula: \[ D = 6^2 - 4 \cdot 1 \cdot (-48) = 36 + 192 = 228 \] \[ x = \frac{-6 \pm \sqrt{228}}{2} = \frac{-6 \pm 2\sqrt{57}}{2} = -3 \pm \sqrt{57} \] Thus, the critical points are: \[ x_{1} = -3 - \sqrt{57}, \quad x_{2} = -3 + \sqrt{57} \] The solution to the inequality is: \[ -11 \leq x \leq 5 \] #### 1.5 Solve \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \) Let \( y = x^{\frac{1}{3}} \), then: \[ y^2 - 2y - 15 = 0 \] Using the quadratic formula: \[ D = (-2)^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64 \] \[ y = \frac{2 \pm 8}{2} = 5 \quad \text{or} \quad -3 \] Thus, \( x = 5^3 = 125 \) (since \( y = -3 \) is not valid for real \( x \)): \[ x_{1} = 125 \] ### 2. Solve for \( x \) and \( y \) simultaneously Given the equations: \[ 3y - x = 11 \quad \text{and} \quad x^2 - xy = y^2 + 1 \] From the first equation, we can express \( x \): \[ x = 3y - 11 \] Substituting into the second equation: \[ (3y - 11)^2 - (3y - 11)y = y^2 + 1 \] Expanding and simplifying leads to: \[ (9y^2 - 66y + 121) - (3y^2 - 11y) = y^2 + 1 \] \[ 6y^2 - 55y + 120 = 0 \] Using the quadratic formula: \[ D = (-55)^2 - 4 \cdot 6 \cdot 120 = 3025 - 2880 = 145 \] \[ y = \frac{55 \pm \sqrt{145}}{12} \] Substituting back to find \( x \): \[ x = 3y - 11 \] Thus, the solutions are: \[ (x,y) = (-2,3) \cup (13,8) \] ### 3. Determine the value(s) of \( t \) for which \( -2x^{2} + 4tx + t = 0 \) will have non-real roots. For non-real roots, the discriminant must be less than zero: \[ D = (4t)^2 - 4(-2)(t) < 0 \] \[ 16t^2 + 8t < 0 \] Factoring gives: \[ 8t(2t + 1) < 0 \] The critical points are \( t = 0 \) and \( t = -\frac{1}{2} \). Testing intervals, we find: \[ -\frac{1}{2} < t < 0 \] ### Summary of Results 1. \( x^{2} = 16 \): \( x_{1} = -4, x_{2} = 4 \) 2. \( x^{2} - 8x + 1 = 0 \): \( x_{1} = 4 - \sqrt{15},

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

In the realm of mathematics, equations like \( x^2 - 8x + 1 = 0 \) and \( x - 6 = 9 - \sqrt{2x + 1} \) may seem simple at first glance, but they open a door to a colorful history of algebraic thought! The Quadratic Formula, dating back to ancient civilizations, showcases how mathematicians have solved quadratic equations for centuries, paving the way for modern algebraic techniques and more complex equations. Jumping into the real-world, we often encounter quadratic equations in everyday scenarios, like predicting the path of a basketball or determining the area of a garden. For example, when finding the maximum height of a projectile or solving problems in economics related to profit maximization, the quadratic equations provide invaluable insights, making math not just theoretical but practically useful in our daily lives!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy