Pregunta
upstudy study bank question image url

QUESTION I Torm \{ 2 ons 1.1 Solvo formi \( 1.114 x^{2}=16 \) \( 1.125 x^{2}-8 x+1=0 \quad \) (Correct \( t o \mathrm{ONB} \) decimal) \( 1.133 x-6=9-\sqrt{2 x+1} \) (6) \( 1.1 .4(x+7)(x-1) \leq 48 \) \( 1.15 x^{\frac{2}{3}}-2 x^{\frac{1}{3}}=15 \) (5) 12 Solve for \( x \) and \( y \) simultaneously in the equations below: \[ 3 y-x=11 \text { and } x^{2}-x y=y^{2}+1 \] 1.3 Determine the value(s) of \( t \) for which \( -2 x^{2}+4 t x+t=0 \) will have non-real roots. (3) [28]

Ask by Ellis Chang. in South Africa
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. **Solutions for \( x \):** - \( x^{2} = 16 \): \( x = -4 \) or \( x = 4 \) - \( x^{2} - 8x + 1 = 0 \): \( x = 4 - \sqrt{15} \) or \( x = 4 + \sqrt{15} \) - \( x - 6 = 9 - \sqrt{2x + 1} \): \( x = 16 - 4\sqrt{2} \) or \( x = 16 + 4\sqrt{2} \) - \( (x + 7)(x - 1) \leq 48 \): \( -11 \leq x \leq 5 \) - \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \): \( x = 125 \) 2. **Simultaneous Equations:** - \( 3y - x = 11 \) and \( x^2 - xy = y^2 + 1 \): Solutions are \( (x, y) = (-2, 3) \) and \( (13, 8) \) 3. **Value of \( t \) for Non-Real Roots:** - \( -2x^{2} + 4tx + t = 0 \): \( t \) must be between \( -\frac{1}{2} \) and \( 0 \) for non-real roots.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(x-6=9\) - step1: Move the constant to the right side: \(x=9+6\) - step2: Add the numbers: \(x=15\) Solve the equation \( x^{2}=16 \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(x^{2}=16\) - step1: Simplify the expression: \(x=\pm \sqrt{16}\) - step2: Simplify the expression: \(x=\pm 4\) - step3: Separate into possible cases: \(\begin{align}&x=4\\&x=-4\end{align}\) - step4: Rewrite: \(x_{1}=-4,x_{2}=4\) Solve the equation \( x^{2}-8 x+1=0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x^{2}-8x+1=0\) - step1: Solve using the quadratic formula: \(x=\frac{8\pm \sqrt{\left(-8\right)^{2}-4}}{2}\) - step2: Simplify the expression: \(x=\frac{8\pm \sqrt{60}}{2}\) - step3: Simplify the expression: \(x=\frac{8\pm 2\sqrt{15}}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{8+2\sqrt{15}}{2}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=4+\sqrt{15}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=4+\sqrt{15}\\&x=4-\sqrt{15}\end{align}\) - step7: Rewrite: \(x_{1}=4-\sqrt{15},x_{2}=4+\sqrt{15}\) Solve the equation \( x^{\frac{2}{3}}-2 x^{\frac{1}{3}}=15 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x^{\frac{2}{3}}-2x^{\frac{1}{3}}=15\) - step1: Move the expression to the left side: \(x^{\frac{2}{3}}-2x^{\frac{1}{3}}-15=0\) - step2: Solve using substitution: \(t^{2}-2t-15=0\) - step3: Factor the expression: \(\left(t-5\right)\left(t+3\right)=0\) - step4: Separate into possible cases: \(\begin{align}&t-5=0\\&t+3=0\end{align}\) - step5: Solve the equation: \(\begin{align}&t=5\\&t=-3\end{align}\) - step6: Substitute back: \(\begin{align}&x^{\frac{1}{3}}=5\\&x^{\frac{1}{3}}=-3\end{align}\) - step7: Solve the equation for \(x:\) \(\begin{align}&x=125\\&x=-27\end{align}\) - step8: Rewrite: \(x_{1}=-27,x_{2}=125\) Solve the equation \( (x+7)(x-1) \leq 48 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\left(x+7\right)\left(x-1\right)\leq 48\) - step1: Move the expression to the left side: \(\left(x+7\right)\left(x-1\right)-48\leq 0\) - step2: Subtract the terms: \(x^{2}+6x-55\leq 0\) - step3: Rewrite the expression: \(x^{2}+6x-55=0\) - step4: Factor the expression: \(\left(x-5\right)\left(x+11\right)=0\) - step5: Separate into possible cases: \(\begin{align}&x-5=0\\&x+11=0\end{align}\) - step6: Solve the equation: \(\begin{align}&x=5\\&x=-11\end{align}\) - step7: Determine the test intervals: \(\begin{align}&x<-11\\&-115\end{align}\) - step8: Choose a value: \(\begin{align}&x_{1}=-12\\&x_{2}=-3\\&x_{3}=6\end{align}\) - step9: Test the chosen value: \(\begin{align}&x<-11\textrm{ }\textrm{is not a solution}\\&-115\textrm{ }\textrm{is not a solution}\end{align}\) - step10: Include the critical value: \(\begin{align}&-11\leq x\leq 5\textrm{ }\textrm{is the solution}\end{align}\) - step11: The final solution is \(-11\leq x\leq 5:\) \(-11\leq x\leq 5\) Solve the system of equations \( 3 y-x=11;x^{2}-x y=y^{2}+1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}3y-x=11\\x^{2}-xy=y^{2}+1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-11+3y\\x^{2}-xy=y^{2}+1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left(-11+3y\right)^{2}-\left(-11+3y\right)y=y^{2}+1\) - step3: Simplify: \(121-55y+6y^{2}=y^{2}+1\) - step4: Move the expression to the left side: \(121-55y+6y^{2}-\left(y^{2}+1\right)=0\) - step5: Calculate: \(120-55y+5y^{2}=0\) - step6: Factor the expression: \(5\left(8-y\right)\left(3-y\right)=0\) - step7: Divide the terms: \(\left(8-y\right)\left(3-y\right)=0\) - step8: Separate into possible cases: \(\begin{align}&8-y=0\\&3-y=0\end{align}\) - step9: Solve the equation: \(\begin{align}&y=8\\&y=3\end{align}\) - step10: Calculate: \(y=8\cup y=3\) - step11: Rearrange the terms: \(\left\{ \begin{array}{l}x=-11+3y\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-11+3y\\y=3\end{array}\right.\) - step12: Calculate: \(\left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\) - step13: Calculate: \(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\) - step15: Rewrite: \(\left(x,y\right) = \left(-2,3\right)\cup \left(x,y\right) = \left(13,8\right)\) Solve the equation \( -2 x^{2}+4 t x+t=0 \). Solve the equation by following steps: - step0: Solve for \(t\): \(-2x^{2}+4tx+t=0\) - step1: Rewrite the expression: \(-2x^{2}+4xt+t=0\) - step2: Collect like terms: \(-2x^{2}+\left(4x+1\right)t=0\) - step3: Move the constant to the right side: \(\left(4x+1\right)t=0+2x^{2}\) - step4: Remove 0: \(\left(4x+1\right)t=2x^{2}\) - step5: Divide both sides: \(\frac{\left(4x+1\right)t}{4x+1}=\frac{2x^{2}}{4x+1}\) - step6: Divide the numbers: \(t=\frac{2x^{2}}{4x+1}\) Let's solve the problems step by step. ### 1. Solve for \( x \) #### 1.1 Solve \( x^{2} = 16 \) To solve this equation, we take the square root of both sides: \[ x = \pm 4 \] Thus, the solutions are: \[ x_{1} = -4, \quad x_{2} = 4 \] #### 1.2 Solve \( x^{2} - 8x + 1 = 0 \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -8, c = 1 \). Calculating the discriminant: \[ D = b^2 - 4ac = (-8)^2 - 4 \cdot 1 \cdot 1 = 64 - 4 = 60 \] Now applying the quadratic formula: \[ x = \frac{8 \pm \sqrt{60}}{2} = \frac{8 \pm 2\sqrt{15}}{2} = 4 \pm \sqrt{15} \] Thus, the solutions are: \[ x_{1} = 4 - \sqrt{15}, \quad x_{2} = 4 + \sqrt{15} \quad (\text{approximately } x_{1} \approx 0.127, x_{2} \approx 7.873) \] #### 1.3 Solve \( x - 6 = 9 - \sqrt{2x + 1} \) Rearranging gives: \[ \sqrt{2x + 1} = 9 - (x - 6) = 15 - x \] Squaring both sides: \[ 2x + 1 = (15 - x)^2 \] \[ 2x + 1 = 225 - 30x + x^2 \] \[ x^2 - 32x + 224 = 0 \] Using the quadratic formula: \[ D = (-32)^2 - 4 \cdot 1 \cdot 224 = 1024 - 896 = 128 \] \[ x = \frac{32 \pm \sqrt{128}}{2} = \frac{32 \pm 8\sqrt{2}}{2} = 16 \pm 4\sqrt{2} \] Thus, the solutions are: \[ x_{1} = 16 - 4\sqrt{2}, \quad x_{2} = 16 + 4\sqrt{2} \] #### 1.4 Solve \( (x + 7)(x - 1) \leq 48 \) First, we expand and rearrange: \[ x^2 + 6x - 48 \leq 0 \] Finding the roots: \[ x^2 + 6x - 48 = 0 \] Using the quadratic formula: \[ D = 6^2 - 4 \cdot 1 \cdot (-48) = 36 + 192 = 228 \] \[ x = \frac{-6 \pm \sqrt{228}}{2} = \frac{-6 \pm 2\sqrt{57}}{2} = -3 \pm \sqrt{57} \] Thus, the critical points are: \[ x_{1} = -3 - \sqrt{57}, \quad x_{2} = -3 + \sqrt{57} \] The solution to the inequality is: \[ -11 \leq x \leq 5 \] #### 1.5 Solve \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \) Let \( y = x^{\frac{1}{3}} \), then: \[ y^2 - 2y - 15 = 0 \] Using the quadratic formula: \[ D = (-2)^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64 \] \[ y = \frac{2 \pm 8}{2} = 5 \quad \text{or} \quad -3 \] Thus, \( x = 5^3 = 125 \) (since \( y = -3 \) is not valid for real \( x \)): \[ x_{1} = 125 \] ### 2. Solve for \( x \) and \( y \) simultaneously Given the equations: \[ 3y - x = 11 \quad \text{and} \quad x^2 - xy = y^2 + 1 \] From the first equation, we can express \( x \): \[ x = 3y - 11 \] Substituting into the second equation: \[ (3y - 11)^2 - (3y - 11)y = y^2 + 1 \] Expanding and simplifying leads to: \[ (9y^2 - 66y + 121) - (3y^2 - 11y) = y^2 + 1 \] \[ 6y^2 - 55y + 120 = 0 \] Using the quadratic formula: \[ D = (-55)^2 - 4 \cdot 6 \cdot 120 = 3025 - 2880 = 145 \] \[ y = \frac{55 \pm \sqrt{145}}{12} \] Substituting back to find \( x \): \[ x = 3y - 11 \] Thus, the solutions are: \[ (x,y) = (-2,3) \cup (13,8) \] ### 3. Determine the value(s) of \( t \) for which \( -2x^{2} + 4tx + t = 0 \) will have non-real roots. For non-real roots, the discriminant must be less than zero: \[ D = (4t)^2 - 4(-2)(t) < 0 \] \[ 16t^2 + 8t < 0 \] Factoring gives: \[ 8t(2t + 1) < 0 \] The critical points are \( t = 0 \) and \( t = -\frac{1}{2} \). Testing intervals, we find: \[ -\frac{1}{2} < t < 0 \] ### Summary of Results 1. \( x^{2} = 16 \): \( x_{1} = -4, x_{2} = 4 \) 2. \( x^{2} - 8x + 1 = 0 \): \( x_{1} = 4 - \sqrt{15},

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In the realm of mathematics, equations like \( x^2 - 8x + 1 = 0 \) and \( x - 6 = 9 - \sqrt{2x + 1} \) may seem simple at first glance, but they open a door to a colorful history of algebraic thought! The Quadratic Formula, dating back to ancient civilizations, showcases how mathematicians have solved quadratic equations for centuries, paving the way for modern algebraic techniques and more complex equations. Jumping into the real-world, we often encounter quadratic equations in everyday scenarios, like predicting the path of a basketball or determining the area of a garden. For example, when finding the maximum height of a projectile or solving problems in economics related to profit maximization, the quadratic equations provide invaluable insights, making math not just theoretical but practically useful in our daily lives!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad