Responder
1. **Solutions for \( x \):**
- \( x^{2} = 16 \): \( x = -4 \) or \( x = 4 \)
- \( x^{2} - 8x + 1 = 0 \): \( x = 4 - \sqrt{15} \) or \( x = 4 + \sqrt{15} \)
- \( x - 6 = 9 - \sqrt{2x + 1} \): \( x = 16 - 4\sqrt{2} \) or \( x = 16 + 4\sqrt{2} \)
- \( (x + 7)(x - 1) \leq 48 \): \( -11 \leq x \leq 5 \)
- \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \): \( x = 125 \)
2. **Simultaneous Equations:**
- \( 3y - x = 11 \) and \( x^2 - xy = y^2 + 1 \): Solutions are \( (x, y) = (-2, 3) \) and \( (13, 8) \)
3. **Value of \( t \) for Non-Real Roots:**
- \( -2x^{2} + 4tx + t = 0 \): \( t \) must be between \( -\frac{1}{2} \) and \( 0 \) for non-real roots.
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x-6=9\)
- step1: Move the constant to the right side:
\(x=9+6\)
- step2: Add the numbers:
\(x=15\)
Solve the equation \( x^{2}=16 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(x^{2}=16\)
- step1: Simplify the expression:
\(x=\pm \sqrt{16}\)
- step2: Simplify the expression:
\(x=\pm 4\)
- step3: Separate into possible cases:
\(\begin{align}&x=4\\&x=-4\end{align}\)
- step4: Rewrite:
\(x_{1}=-4,x_{2}=4\)
Solve the equation \( x^{2}-8 x+1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(x^{2}-8x+1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{8\pm \sqrt{\left(-8\right)^{2}-4}}{2}\)
- step2: Simplify the expression:
\(x=\frac{8\pm \sqrt{60}}{2}\)
- step3: Simplify the expression:
\(x=\frac{8\pm 2\sqrt{15}}{2}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{8+2\sqrt{15}}{2}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\)
- step5: Simplify the expression:
\(\begin{align}&x=4+\sqrt{15}\\&x=\frac{8-2\sqrt{15}}{2}\end{align}\)
- step6: Simplify the expression:
\(\begin{align}&x=4+\sqrt{15}\\&x=4-\sqrt{15}\end{align}\)
- step7: Rewrite:
\(x_{1}=4-\sqrt{15},x_{2}=4+\sqrt{15}\)
Solve the equation \( x^{\frac{2}{3}}-2 x^{\frac{1}{3}}=15 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{\frac{2}{3}}-2x^{\frac{1}{3}}=15\)
- step1: Move the expression to the left side:
\(x^{\frac{2}{3}}-2x^{\frac{1}{3}}-15=0\)
- step2: Solve using substitution:
\(t^{2}-2t-15=0\)
- step3: Factor the expression:
\(\left(t-5\right)\left(t+3\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&t-5=0\\&t+3=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&t=5\\&t=-3\end{align}\)
- step6: Substitute back:
\(\begin{align}&x^{\frac{1}{3}}=5\\&x^{\frac{1}{3}}=-3\end{align}\)
- step7: Solve the equation for \(x:\)
\(\begin{align}&x=125\\&x=-27\end{align}\)
- step8: Rewrite:
\(x_{1}=-27,x_{2}=125\)
Solve the equation \( (x+7)(x-1) \leq 48 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(\left(x+7\right)\left(x-1\right)\leq 48\)
- step1: Move the expression to the left side:
\(\left(x+7\right)\left(x-1\right)-48\leq 0\)
- step2: Subtract the terms:
\(x^{2}+6x-55\leq 0\)
- step3: Rewrite the expression:
\(x^{2}+6x-55=0\)
- step4: Factor the expression:
\(\left(x-5\right)\left(x+11\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&x-5=0\\&x+11=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=5\\&x=-11\end{align}\)
- step7: Determine the test intervals:
\(\begin{align}&x<-11\\&-115\end{align}\)
- step8: Choose a value:
\(\begin{align}&x_{1}=-12\\&x_{2}=-3\\&x_{3}=6\end{align}\)
- step9: Test the chosen value:
\(\begin{align}&x<-11\textrm{ }\textrm{is not a solution}\\&-115\textrm{ }\textrm{is not a solution}\end{align}\)
- step10: Include the critical value:
\(\begin{align}&-11\leq x\leq 5\textrm{ }\textrm{is the solution}\end{align}\)
- step11: The final solution is \(-11\leq x\leq 5:\)
\(-11\leq x\leq 5\)
Solve the system of equations \( 3 y-x=11;x^{2}-x y=y^{2}+1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3y-x=11\\x^{2}-xy=y^{2}+1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-11+3y\\x^{2}-xy=y^{2}+1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(-11+3y\right)^{2}-\left(-11+3y\right)y=y^{2}+1\)
- step3: Simplify:
\(121-55y+6y^{2}=y^{2}+1\)
- step4: Move the expression to the left side:
\(121-55y+6y^{2}-\left(y^{2}+1\right)=0\)
- step5: Calculate:
\(120-55y+5y^{2}=0\)
- step6: Factor the expression:
\(5\left(8-y\right)\left(3-y\right)=0\)
- step7: Divide the terms:
\(\left(8-y\right)\left(3-y\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&8-y=0\\&3-y=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&y=8\\&y=3\end{align}\)
- step10: Calculate:
\(y=8\cup y=3\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-11+3y\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-11+3y\\y=3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-2\\y=3\end{array}\right.\cup \left\{ \begin{array}{l}x=13\\y=8\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-2,3\right)\cup \left(x,y\right) = \left(13,8\right)\)
Solve the equation \( -2 x^{2}+4 t x+t=0 \).
Solve the equation by following steps:
- step0: Solve for \(t\):
\(-2x^{2}+4tx+t=0\)
- step1: Rewrite the expression:
\(-2x^{2}+4xt+t=0\)
- step2: Collect like terms:
\(-2x^{2}+\left(4x+1\right)t=0\)
- step3: Move the constant to the right side:
\(\left(4x+1\right)t=0+2x^{2}\)
- step4: Remove 0:
\(\left(4x+1\right)t=2x^{2}\)
- step5: Divide both sides:
\(\frac{\left(4x+1\right)t}{4x+1}=\frac{2x^{2}}{4x+1}\)
- step6: Divide the numbers:
\(t=\frac{2x^{2}}{4x+1}\)
Let's solve the problems step by step.
### 1. Solve for \( x \)
#### 1.1 Solve \( x^{2} = 16 \)
To solve this equation, we take the square root of both sides:
\[
x = \pm 4
\]
Thus, the solutions are:
\[
x_{1} = -4, \quad x_{2} = 4
\]
#### 1.2 Solve \( x^{2} - 8x + 1 = 0 \)
Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
Here, \( a = 1, b = -8, c = 1 \).
Calculating the discriminant:
\[
D = b^2 - 4ac = (-8)^2 - 4 \cdot 1 \cdot 1 = 64 - 4 = 60
\]
Now applying the quadratic formula:
\[
x = \frac{8 \pm \sqrt{60}}{2} = \frac{8 \pm 2\sqrt{15}}{2} = 4 \pm \sqrt{15}
\]
Thus, the solutions are:
\[
x_{1} = 4 - \sqrt{15}, \quad x_{2} = 4 + \sqrt{15} \quad (\text{approximately } x_{1} \approx 0.127, x_{2} \approx 7.873)
\]
#### 1.3 Solve \( x - 6 = 9 - \sqrt{2x + 1} \)
Rearranging gives:
\[
\sqrt{2x + 1} = 9 - (x - 6) = 15 - x
\]
Squaring both sides:
\[
2x + 1 = (15 - x)^2
\]
\[
2x + 1 = 225 - 30x + x^2
\]
\[
x^2 - 32x + 224 = 0
\]
Using the quadratic formula:
\[
D = (-32)^2 - 4 \cdot 1 \cdot 224 = 1024 - 896 = 128
\]
\[
x = \frac{32 \pm \sqrt{128}}{2} = \frac{32 \pm 8\sqrt{2}}{2} = 16 \pm 4\sqrt{2}
\]
Thus, the solutions are:
\[
x_{1} = 16 - 4\sqrt{2}, \quad x_{2} = 16 + 4\sqrt{2}
\]
#### 1.4 Solve \( (x + 7)(x - 1) \leq 48 \)
First, we expand and rearrange:
\[
x^2 + 6x - 48 \leq 0
\]
Finding the roots:
\[
x^2 + 6x - 48 = 0
\]
Using the quadratic formula:
\[
D = 6^2 - 4 \cdot 1 \cdot (-48) = 36 + 192 = 228
\]
\[
x = \frac{-6 \pm \sqrt{228}}{2} = \frac{-6 \pm 2\sqrt{57}}{2} = -3 \pm \sqrt{57}
\]
Thus, the critical points are:
\[
x_{1} = -3 - \sqrt{57}, \quad x_{2} = -3 + \sqrt{57}
\]
The solution to the inequality is:
\[
-11 \leq x \leq 5
\]
#### 1.5 Solve \( x^{\frac{2}{3}} - 2x^{\frac{1}{3}} = 15 \)
Let \( y = x^{\frac{1}{3}} \), then:
\[
y^2 - 2y - 15 = 0
\]
Using the quadratic formula:
\[
D = (-2)^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64
\]
\[
y = \frac{2 \pm 8}{2} = 5 \quad \text{or} \quad -3
\]
Thus, \( x = 5^3 = 125 \) (since \( y = -3 \) is not valid for real \( x \)):
\[
x_{1} = 125
\]
### 2. Solve for \( x \) and \( y \) simultaneously
Given the equations:
\[
3y - x = 11 \quad \text{and} \quad x^2 - xy = y^2 + 1
\]
From the first equation, we can express \( x \):
\[
x = 3y - 11
\]
Substituting into the second equation:
\[
(3y - 11)^2 - (3y - 11)y = y^2 + 1
\]
Expanding and simplifying leads to:
\[
(9y^2 - 66y + 121) - (3y^2 - 11y) = y^2 + 1
\]
\[
6y^2 - 55y + 120 = 0
\]
Using the quadratic formula:
\[
D = (-55)^2 - 4 \cdot 6 \cdot 120 = 3025 - 2880 = 145
\]
\[
y = \frac{55 \pm \sqrt{145}}{12}
\]
Substituting back to find \( x \):
\[
x = 3y - 11
\]
Thus, the solutions are:
\[
(x,y) = (-2,3) \cup (13,8)
\]
### 3. Determine the value(s) of \( t \) for which \( -2x^{2} + 4tx + t = 0 \) will have non-real roots.
For non-real roots, the discriminant must be less than zero:
\[
D = (4t)^2 - 4(-2)(t) < 0
\]
\[
16t^2 + 8t < 0
\]
Factoring gives:
\[
8t(2t + 1) < 0
\]
The critical points are \( t = 0 \) and \( t = -\frac{1}{2} \). Testing intervals, we find:
\[
-\frac{1}{2} < t < 0
\]
### Summary of Results
1. \( x^{2} = 16 \): \( x_{1} = -4, x_{2} = 4 \)
2. \( x^{2} - 8x + 1 = 0 \): \( x_{1} = 4 - \sqrt{15},
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución