Q:
1-6 Write the composite function in the form \( f(g(x)) \).
\( [ \) Identify the inner function \( u=g(x) \) and the outer function
\( y=f(u) \). \( ] \) Then find the derivative \( d y / d x \).
\( \begin{array}{ll}\text { 1. } y=\left(5-x^{4}\right)^{3} & \text { 2. } y=\sqrt{x^{3}+2}\end{array} \)
Q:
Esegui l'integrazione della funzione \( \frac{2x^3 + 3x^2 + 4}{x^2 + 1} \) utilizzando il metodo della divisione lunga.
Q:
Find the indefinite integral of \( f(x) = 6x^2 + 5x - 3 \) with respect to \( x \).
Q:
Solve the following initial-value problem. Leave your solution as an equation in implicit form. That is, do
not bother to try to solve for \( y \) (to give \( y \) as a function of \( x \) ), but do make sure that your final equation
does not mention derivatives or integrals--and be kind: simplify the equation.
\[ y^{\prime}=\frac{x^{2}+3 x+2}{y-2}, y(1)=4 \]
Q:
Using substitution, evaluate the integral ∫(x sin(x^2)) dx.
Q:
Repeat the same argurnent to show that
\[ \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}+4}=0 \text { and } \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+15}=\infty \]
Q:
\( y ^ { 3 } \sin ( 2 x ) d x - 3 y ^ { 2 } \cos ^ { 2 } x d y = 0 \)
Q:
If \( \operatorname{Lim}_{x \rightarrow 0} \frac{\sin ^{2}\left(4 x^{3}\right)}{x^{n}}=16 \), then \( n=\ldots \ldots \)
Q:
\( I = \int e ^ { x } \sin x \cdot d x \)
Q:
1) \( \operatorname{Lim}_{x \rightarrow 0} \frac{1-\sec x}{\cos x-1}= \)
Pon a prueba tus conocimientos sobre Cálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar