Question
upstudy study bank question image url

(1) \( \frac{\tan 160^{\circ} \cdot \cos 200^{\circ}}{\sin 340^{\circ}} \) (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \)

Ask by French Knight. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The results are approximately: 1. -0.168491 2. 1.69784 3. 14.949804 4. 5.156911

Solution

Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\tan\left(160\right)\cos\left(200\right)\right)}{\sin\left(340\right)}\) - step1: Remove the parentheses: \(\frac{\tan\left(160\right)\cos\left(200\right)}{\sin\left(340\right)}\) - step2: Transform the expression: \(\frac{\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}}{\sin\left(340\right)}\) - step3: Multiply by the reciprocal: \(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}\times \frac{1}{\sin\left(340\right)}\) - step4: Multiply the terms: \(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)\sin\left(340\right)}\) - step5: Transform the expression: \(\frac{\cos\left(200\right)\tan\left(160\right)}{\sin\left(340\right)}\) - step6: Transform the expression: \(\cos\left(200\right)\tan\left(160\right)\csc\left(340\right)\) Calculate or simplify the expression \( \tan(365) + (\cos(85) / \cos(185)) \). Calculate the value by following steps: - step0: Calculate: \(\tan\left(365\right)+\left(\frac{\cos\left(85\right)}{\cos\left(185\right)}\right)\) - step1: Remove the parentheses: \(\tan\left(365\right)+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{\tan\left(365\right)\cos\left(185\right)}{\cos\left(185\right)}+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step3: Transform the expression: \(\frac{\tan\left(365\right)\cos\left(185\right)+\cos\left(85\right)}{\cos\left(185\right)}\) - step4: Calculate the trigonometric value: \(1.69784\) Calculate or simplify the expression \( (\sin(40)^2 + \sin(130)^2) / (\tan(315) * \cos(210)^2) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(40^{2}\right)+\sin\left(130^{2}\right)\right)}{\left(\tan\left(315\right)\cos\left(210^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(40^{2}\right)+\sin\left(130^{2}\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(-7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step3: Calculate: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step4: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\frac{\sin\left(315\right)\cos\left(210^{2}\right)}{\cos\left(315\right)}}\) - step5: Multiply by the reciprocal: \(2\sin\left(9250\right)\cos\left(7650\right)\times \frac{\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step6: Multiply the terms: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step7: Transform the expression: \(\frac{\sin\left(9250\right)\cos\left(7650\right)\times 2\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step8: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step9: Transform the expression: \(2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)\sec\left(210^{2}\right)\) Calculate or simplify the expression \( (\sin(10)^2 + \sin(100)^2 - \cos(200)^2) / (\sin(-20) * \cos(250)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)\right)}{\left(\sin\left(-20\right)\cos\left(250\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(5050\right)\cos\left(-4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step3: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step4: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step5: Evaluate the power: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step6: Rewrite the fraction: \(-\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{\sin\left(20\right)\cos\left(250\right)}\) - step7: Transform the expression: \(\frac{\cos\left(40000\right)-2\sin\left(5050\right)\cos\left(4950\right)}{\sin\left(20\right)\cos\left(250\right)}\) Let's solve each expression step by step. ### (1) \( \frac{\tan 160^{\circ} \cdot \cos 200^{\circ}}{\sin 340^{\circ}} \) 1. **Calculate \( \tan 160^{\circ} \)**: - \( \tan 160^{\circ} \) is negative since \( 160^{\circ} \) is in the second quadrant. 2. **Calculate \( \cos 200^{\circ} \)**: - \( \cos 200^{\circ} \) is also negative since \( 200^{\circ} \) is in the third quadrant. 3. **Calculate \( \sin 340^{\circ} \)**: - \( \sin 340^{\circ} \) is positive since \( 340^{\circ} \) is in the fourth quadrant. 4. **Combine the results**: - The expression simplifies to a negative value divided by a positive value. The final result is approximately: \[ \approx -0.168491 \] ### (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) 1. **Calculate \( \tan 365^{\circ} \)**: - \( \tan 365^{\circ} = \tan(5^{\circ}) \) since \( 365^{\circ} \) is equivalent to \( 5^{\circ} \). 2. **Calculate \( \cos 85^{\circ} \)** and \( \cos 185^{\circ} \)**: - \( \cos 85^{\circ} \) is positive and \( \cos 185^{\circ} \) is negative. 3. **Combine the results**: - The expression results in a positive value from \( \tan 5^{\circ} \) and a negative fraction. The final result is approximately: \[ \approx 1.69784 \] ### (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) 1. **Calculate \( \sin^{2} 40^{\circ} \)** and \( \sin^{2} 130^{\circ} \)**: - Both sine values are positive. 2. **Calculate \( \tan 315^{\circ} \)**: - \( \tan 315^{\circ} \) is negative. 3. **Calculate \( \cos^{2} 210^{\circ} \)**: - \( \cos 210^{\circ} \) is negative, so its square is positive. 4. **Combine the results**: - The numerator is positive, and the denominator is negative, resulting in a negative value. The final result is approximately: \[ \approx 14.949804 \] ### (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \) 1. **Calculate \( \sin^{2} 10^{\circ} \)** and \( \sin^{2} 100^{\circ} \)**: - Both sine values are positive. 2. **Calculate \( \cos^{2} 200^{\circ} \)**: - \( \cos 200^{\circ} \) is negative, so its square is positive. 3. **Calculate \( \sin(-20^{\circ}) \)**: - This is negative. 4. **Calculate \( \cos 250^{\circ} \)**: - This is also negative. 5. **Combine the results**: - The numerator is positive, and the denominator is positive, resulting in a positive value. The final result is approximately: \[ \approx 5.156911 \] ### Summary of Results: 1. \( \approx -0.168491 \) 2. \( \approx 1.69784 \) 3. \( \approx 14.949804 \) 4. \( \approx 5.156911 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that angles in trigonometry can often be converted to their equivalent values to make calculations easier? For instance, \( \tan 160^{\circ} \) can be rewritten as \( -\tan 20^{\circ} \), and using complementary angles, \( \cos 200^{\circ} \) is equivalent to \( -\cos 20^{\circ} \). What a neat trick to simplify your computations! When it comes to using trigonometric expressions in real-world scenarios, think of a skateboarder launching off a ramp! The angles of the ramp can model the trajectory of the skateboard. For instance, understanding the sine and cosine can help determine the height reached, the distance traveled, and ultimately, if they will land safely or take a tumble! Understanding these functions can give you the jump you need in physics problems!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy