Answer
The results are approximately:
1. -0.168491
2. 1.69784
3. 14.949804
4. 5.156911
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\tan\left(160\right)\cos\left(200\right)\right)}{\sin\left(340\right)}\)
- step1: Remove the parentheses:
\(\frac{\tan\left(160\right)\cos\left(200\right)}{\sin\left(340\right)}\)
- step2: Transform the expression:
\(\frac{\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}}{\sin\left(340\right)}\)
- step3: Multiply by the reciprocal:
\(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}\times \frac{1}{\sin\left(340\right)}\)
- step4: Multiply the terms:
\(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)\sin\left(340\right)}\)
- step5: Transform the expression:
\(\frac{\cos\left(200\right)\tan\left(160\right)}{\sin\left(340\right)}\)
- step6: Transform the expression:
\(\cos\left(200\right)\tan\left(160\right)\csc\left(340\right)\)
Calculate or simplify the expression \( \tan(365) + (\cos(85) / \cos(185)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\tan\left(365\right)+\left(\frac{\cos\left(85\right)}{\cos\left(185\right)}\right)\)
- step1: Remove the parentheses:
\(\tan\left(365\right)+\frac{\cos\left(85\right)}{\cos\left(185\right)}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\tan\left(365\right)\cos\left(185\right)}{\cos\left(185\right)}+\frac{\cos\left(85\right)}{\cos\left(185\right)}\)
- step3: Transform the expression:
\(\frac{\tan\left(365\right)\cos\left(185\right)+\cos\left(85\right)}{\cos\left(185\right)}\)
- step4: Calculate the trigonometric value:
\(1.69784\)
Calculate or simplify the expression \( (\sin(40)^2 + \sin(130)^2) / (\tan(315) * \cos(210)^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\sin\left(40^{2}\right)+\sin\left(130^{2}\right)\right)}{\left(\tan\left(315\right)\cos\left(210^{2}\right)\right)}\)
- step1: Remove the parentheses:
\(\frac{\sin\left(40^{2}\right)+\sin\left(130^{2}\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\)
- step2: Transform the expression:
\(\frac{2\sin\left(9250\right)\cos\left(-7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\)
- step3: Calculate:
\(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\)
- step4: Transform the expression:
\(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\frac{\sin\left(315\right)\cos\left(210^{2}\right)}{\cos\left(315\right)}}\)
- step5: Multiply by the reciprocal:
\(2\sin\left(9250\right)\cos\left(7650\right)\times \frac{\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\)
- step6: Multiply the terms:
\(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\)
- step7: Transform the expression:
\(\frac{\sin\left(9250\right)\cos\left(7650\right)\times 2\cot\left(315\right)}{\cos\left(210^{2}\right)}\)
- step8: Transform the expression:
\(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)}{\cos\left(210^{2}\right)}\)
- step9: Transform the expression:
\(2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)\sec\left(210^{2}\right)\)
Calculate or simplify the expression \( (\sin(10)^2 + \sin(100)^2 - \cos(200)^2) / (\sin(-20) * \cos(250)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)\right)}{\left(\sin\left(-20\right)\cos\left(250\right)\right)}\)
- step1: Remove the parentheses:
\(\frac{\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\)
- step2: Transform the expression:
\(\frac{2\sin\left(5050\right)\cos\left(-4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\)
- step3: Calculate:
\(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\)
- step4: Calculate:
\(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{-\sin\left(20\right)\cos\left(250\right)}\)
- step5: Evaluate the power:
\(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{-\sin\left(20\right)\cos\left(250\right)}\)
- step6: Rewrite the fraction:
\(-\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{\sin\left(20\right)\cos\left(250\right)}\)
- step7: Transform the expression:
\(\frac{\cos\left(40000\right)-2\sin\left(5050\right)\cos\left(4950\right)}{\sin\left(20\right)\cos\left(250\right)}\)
Let's solve each expression step by step.
### (1) \( \frac{\tan 160^{\circ} \cdot \cos 200^{\circ}}{\sin 340^{\circ}} \)
1. **Calculate \( \tan 160^{\circ} \)**:
- \( \tan 160^{\circ} \) is negative since \( 160^{\circ} \) is in the second quadrant.
2. **Calculate \( \cos 200^{\circ} \)**:
- \( \cos 200^{\circ} \) is also negative since \( 200^{\circ} \) is in the third quadrant.
3. **Calculate \( \sin 340^{\circ} \)**:
- \( \sin 340^{\circ} \) is positive since \( 340^{\circ} \) is in the fourth quadrant.
4. **Combine the results**:
- The expression simplifies to a negative value divided by a positive value.
The final result is approximately:
\[
\approx -0.168491
\]
### (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \)
1. **Calculate \( \tan 365^{\circ} \)**:
- \( \tan 365^{\circ} = \tan(5^{\circ}) \) since \( 365^{\circ} \) is equivalent to \( 5^{\circ} \).
2. **Calculate \( \cos 85^{\circ} \)** and \( \cos 185^{\circ} \)**:
- \( \cos 85^{\circ} \) is positive and \( \cos 185^{\circ} \) is negative.
3. **Combine the results**:
- The expression results in a positive value from \( \tan 5^{\circ} \) and a negative fraction.
The final result is approximately:
\[
\approx 1.69784
\]
### (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \)
1. **Calculate \( \sin^{2} 40^{\circ} \)** and \( \sin^{2} 130^{\circ} \)**:
- Both sine values are positive.
2. **Calculate \( \tan 315^{\circ} \)**:
- \( \tan 315^{\circ} \) is negative.
3. **Calculate \( \cos^{2} 210^{\circ} \)**:
- \( \cos 210^{\circ} \) is negative, so its square is positive.
4. **Combine the results**:
- The numerator is positive, and the denominator is negative, resulting in a negative value.
The final result is approximately:
\[
\approx 14.949804
\]
### (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \)
1. **Calculate \( \sin^{2} 10^{\circ} \)** and \( \sin^{2} 100^{\circ} \)**:
- Both sine values are positive.
2. **Calculate \( \cos^{2} 200^{\circ} \)**:
- \( \cos 200^{\circ} \) is negative, so its square is positive.
3. **Calculate \( \sin(-20^{\circ}) \)**:
- This is negative.
4. **Calculate \( \cos 250^{\circ} \)**:
- This is also negative.
5. **Combine the results**:
- The numerator is positive, and the denominator is positive, resulting in a positive value.
The final result is approximately:
\[
\approx 5.156911
\]
### Summary of Results:
1. \( \approx -0.168491 \)
2. \( \approx 1.69784 \)
3. \( \approx 14.949804 \)
4. \( \approx 5.156911 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution