Pregunta
upstudy study bank question image url

(1) \( \frac{\tan 160^{\circ} \cdot \cos 200^{\circ}}{\sin 340^{\circ}} \) (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \)

Ask by French Knight. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The results are approximately: 1. -0.168491 2. 1.69784 3. 14.949804 4. 5.156911

Solución

Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\tan\left(160\right)\cos\left(200\right)\right)}{\sin\left(340\right)}\) - step1: Remove the parentheses: \(\frac{\tan\left(160\right)\cos\left(200\right)}{\sin\left(340\right)}\) - step2: Transform the expression: \(\frac{\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}}{\sin\left(340\right)}\) - step3: Multiply by the reciprocal: \(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)}\times \frac{1}{\sin\left(340\right)}\) - step4: Multiply the terms: \(\frac{\sin\left(160\right)\cos\left(200\right)}{\cos\left(160\right)\sin\left(340\right)}\) - step5: Transform the expression: \(\frac{\cos\left(200\right)\tan\left(160\right)}{\sin\left(340\right)}\) - step6: Transform the expression: \(\cos\left(200\right)\tan\left(160\right)\csc\left(340\right)\) Calculate or simplify the expression \( \tan(365) + (\cos(85) / \cos(185)) \). Calculate the value by following steps: - step0: Calculate: \(\tan\left(365\right)+\left(\frac{\cos\left(85\right)}{\cos\left(185\right)}\right)\) - step1: Remove the parentheses: \(\tan\left(365\right)+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{\tan\left(365\right)\cos\left(185\right)}{\cos\left(185\right)}+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step3: Transform the expression: \(\frac{\tan\left(365\right)\cos\left(185\right)+\cos\left(85\right)}{\cos\left(185\right)}\) - step4: Calculate the trigonometric value: \(1.69784\) Calculate or simplify the expression \( (\sin(40)^2 + \sin(130)^2) / (\tan(315) * \cos(210)^2) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(40^{2}\right)+\sin\left(130^{2}\right)\right)}{\left(\tan\left(315\right)\cos\left(210^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(40^{2}\right)+\sin\left(130^{2}\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(-7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step3: Calculate: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step4: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\frac{\sin\left(315\right)\cos\left(210^{2}\right)}{\cos\left(315\right)}}\) - step5: Multiply by the reciprocal: \(2\sin\left(9250\right)\cos\left(7650\right)\times \frac{\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step6: Multiply the terms: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step7: Transform the expression: \(\frac{\sin\left(9250\right)\cos\left(7650\right)\times 2\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step8: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step9: Transform the expression: \(2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)\sec\left(210^{2}\right)\) Calculate or simplify the expression \( (\sin(10)^2 + \sin(100)^2 - \cos(200)^2) / (\sin(-20) * \cos(250)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)\right)}{\left(\sin\left(-20\right)\cos\left(250\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(5050\right)\cos\left(-4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step3: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step4: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step5: Evaluate the power: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step6: Rewrite the fraction: \(-\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{\sin\left(20\right)\cos\left(250\right)}\) - step7: Transform the expression: \(\frac{\cos\left(40000\right)-2\sin\left(5050\right)\cos\left(4950\right)}{\sin\left(20\right)\cos\left(250\right)}\) Let's solve each expression step by step. ### (1) \( \frac{\tan 160^{\circ} \cdot \cos 200^{\circ}}{\sin 340^{\circ}} \) 1. **Calculate \( \tan 160^{\circ} \)**: - \( \tan 160^{\circ} \) is negative since \( 160^{\circ} \) is in the second quadrant. 2. **Calculate \( \cos 200^{\circ} \)**: - \( \cos 200^{\circ} \) is also negative since \( 200^{\circ} \) is in the third quadrant. 3. **Calculate \( \sin 340^{\circ} \)**: - \( \sin 340^{\circ} \) is positive since \( 340^{\circ} \) is in the fourth quadrant. 4. **Combine the results**: - The expression simplifies to a negative value divided by a positive value. The final result is approximately: \[ \approx -0.168491 \] ### (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) 1. **Calculate \( \tan 365^{\circ} \)**: - \( \tan 365^{\circ} = \tan(5^{\circ}) \) since \( 365^{\circ} \) is equivalent to \( 5^{\circ} \). 2. **Calculate \( \cos 85^{\circ} \)** and \( \cos 185^{\circ} \)**: - \( \cos 85^{\circ} \) is positive and \( \cos 185^{\circ} \) is negative. 3. **Combine the results**: - The expression results in a positive value from \( \tan 5^{\circ} \) and a negative fraction. The final result is approximately: \[ \approx 1.69784 \] ### (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) 1. **Calculate \( \sin^{2} 40^{\circ} \)** and \( \sin^{2} 130^{\circ} \)**: - Both sine values are positive. 2. **Calculate \( \tan 315^{\circ} \)**: - \( \tan 315^{\circ} \) is negative. 3. **Calculate \( \cos^{2} 210^{\circ} \)**: - \( \cos 210^{\circ} \) is negative, so its square is positive. 4. **Combine the results**: - The numerator is positive, and the denominator is negative, resulting in a negative value. The final result is approximately: \[ \approx 14.949804 \] ### (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \) 1. **Calculate \( \sin^{2} 10^{\circ} \)** and \( \sin^{2} 100^{\circ} \)**: - Both sine values are positive. 2. **Calculate \( \cos^{2} 200^{\circ} \)**: - \( \cos 200^{\circ} \) is negative, so its square is positive. 3. **Calculate \( \sin(-20^{\circ}) \)**: - This is negative. 4. **Calculate \( \cos 250^{\circ} \)**: - This is also negative. 5. **Combine the results**: - The numerator is positive, and the denominator is positive, resulting in a positive value. The final result is approximately: \[ \approx 5.156911 \] ### Summary of Results: 1. \( \approx -0.168491 \) 2. \( \approx 1.69784 \) 3. \( \approx 14.949804 \) 4. \( \approx 5.156911 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that angles in trigonometry can often be converted to their equivalent values to make calculations easier? For instance, \( \tan 160^{\circ} \) can be rewritten as \( -\tan 20^{\circ} \), and using complementary angles, \( \cos 200^{\circ} \) is equivalent to \( -\cos 20^{\circ} \). What a neat trick to simplify your computations! When it comes to using trigonometric expressions in real-world scenarios, think of a skateboarder launching off a ramp! The angles of the ramp can model the trajectory of the skateboard. For instance, understanding the sine and cosine can help determine the height reached, the distance traveled, and ultimately, if they will land safely or take a tumble! Understanding these functions can give you the jump you need in physics problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad