Answer
Here are the results for the provided equations:
1. **Equation d:** True
2. **Equation e:** True
3. **Equation f:** True
4. **Equation g:** Cannot evaluate
5. **Equation h:** True
6. **Equation i:** Cannot evaluate
7. **Equation j:** Cannot evaluate
8. **Equation k:** Cannot evaluate
9. **Equation l:** Cannot evaluate
10. **Equation m:** Cannot evaluate
Summary:
- Equations d, e, f, and h are true.
- Equations g, i, j, k, l, and m could not be evaluated due to service issues.
Solution
Verify the identity by following steps:
- step0: Verify:
\(\cos^{4}\left(\theta \right)+\sin^{4}\left(\theta \right)=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\)
- step1: Choose a side to work on:
\(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\)
- step2: Choose the other side to work on:
\(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-\frac{\sin^{2}\left(2\theta \right)}{2}\)
- step3: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( (\cos A)/(1-\sin A)+(\cos A)/(1+\sin A)=2 \sec A \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\frac{\left(\cos\left(A\right)\right)}{\left(1-\sin\left(A\right)\right)}+\frac{\left(\cos\left(A\right)\right)}{\left(1+\sin\left(A\right)\right)}=2\sec\left(A\right)\)
- step1: Choose a side to work on:
\(\frac{2}{\cos\left(A\right)}=2\sec\left(A\right)\)
- step2: Choose the other side to work on:
\(\frac{2}{\cos\left(A\right)}=\frac{2}{\cos\left(A\right)}\)
- step3: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \sec^4 A-\sec^2 A=\tan^4 A+\tan^2 A \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\sec^{4}\left(A\right)-\sec^{2}\left(A\right)=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\)
- step1: Choose a side to work on:
\(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\)
- step2: Choose the other side to work on:
\(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}\)
- step3: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( (1-\cos^2 A)(1+\tan^2 A)=\tan^2 A \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\left(1-\cos^{2}\left(A\right)\right)\left(1+\tan^{2}\left(A\right)\right)=\tan^{2}\left(A\right)\)
- step1: Choose a side to work on:
\(\tan^{2}\left(A\right)=\tan^{2}\left(A\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Here are the results for the provided equations:
1. **Equation d:**
\[
(1 - \cos^2 A)(1 + \tan^2 A) = \tan^2 A
\]
- **Result:** True
2. **Equation e:**
\[
\cos^4 \theta + \sin^4 \theta = 1 - 2 \sin^2 \theta \cos^2 \theta
\]
- **Result:** True
3. **Equation f:**
\[
\sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A
\]
- **Result:** True
4. **Equation g:**
\[
\cos A \operatorname{cosec} A \sqrt{\sec^2 \theta - 1} = 1
\]
- **Result:** Service not available for this calculation.
5. **Equation h:**
\[
\frac{\cos A}{1 - \sin A} + \frac{\cos A}{1 + \sin A} = 2 \sec A
\]
- **Result:** True
6. **Equation i:**
\[
\frac{1}{1 - \cos A} + \frac{1}{1 + \cos A} = 2 \operatorname{cosec}^2 A
\]
- **Result:** Calculation timeout. The calculation may be too complex.
7. **Equation j:**
\[
\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{1 + \tan \theta}{1 - \tan \theta}
\]
- **Result:** Service not available for this calculation.
8. **Equation k:**
\[
\frac{1 - \tan \beta}{1 + \tan \beta} = \frac{\cot \beta - 1}{\cot \beta + 1}
\]
- **Result:** Service not available for this calculation.
9. **Equation l:**
\[
\frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} = \tan \alpha \tan \beta
\]
- **Result:** Service not available for this calculation.
10. **Equation m:**
\[
\frac{1 - \sin \alpha}{\cos \alpha} = 1 + 2 \tan^2 \alpha
\]
- **Result:** Service not available for this calculation.
### Summary:
- Equations d, e, f, and h are confirmed to be true.
- Equations g, i, j, k, l, and m could not be evaluated due to service unavailability or timeout issues.
If you need further assistance or specific evaluations, please let me know!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution