Question
upstudy study bank question image url

d. \( \left(1-\cos ^{2} A\right)\left(1+\tan ^{2} A\right)=\tan ^{2} A \) e. \( \cos ^{4} \theta+\sin ^{4} \theta=1-2 \sin ^{2} \theta \cos ^{2} \theta \) f. \( \sec ^{4} A-\sec ^{2} A=\tan ^{4} A+\tan ^{2} A \) g. \( \cos A \operatorname{cosec} A \sqrt{\sec ^{2} \theta-1}=1 \) h. \( \frac{\cos A}{1-\sin A}+\frac{\cos A}{1+\sin A}=2 \sec A \) i. \( \frac{1}{1-\cos A}+\frac{1}{1+\cos A}=2 \operatorname{cosec}^{2} A \) j. \( \frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}=\frac{1+\tan \theta}{1-\tan \theta} \) k. \( \frac{1-\tan \beta}{1+\tan \beta}=\frac{\cot \beta-1}{\cot \beta+1} \) 1. \( \frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot \beta}=\tan \alpha \tan \beta \) m. \( \frac{1-\sin \alpha}{\cos \alpha}=1+2 \tan ^{2} \alpha \)

Ask by Mccoy Gibson. in Nepal
Feb 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the results for the provided equations: 1. **Equation d:** True 2. **Equation e:** True 3. **Equation f:** True 4. **Equation g:** Cannot evaluate 5. **Equation h:** True 6. **Equation i:** Cannot evaluate 7. **Equation j:** Cannot evaluate 8. **Equation k:** Cannot evaluate 9. **Equation l:** Cannot evaluate 10. **Equation m:** Cannot evaluate Summary: - Equations d, e, f, and h are true. - Equations g, i, j, k, l, and m could not be evaluated due to service issues.

Solution

Verify the identity by following steps: - step0: Verify: \(\cos^{4}\left(\theta \right)+\sin^{4}\left(\theta \right)=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\) - step2: Choose the other side to work on: \(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-\frac{\sin^{2}\left(2\theta \right)}{2}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (\cos A)/(1-\sin A)+(\cos A)/(1+\sin A)=2 \sec A \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{\left(\cos\left(A\right)\right)}{\left(1-\sin\left(A\right)\right)}+\frac{\left(\cos\left(A\right)\right)}{\left(1+\sin\left(A\right)\right)}=2\sec\left(A\right)\) - step1: Choose a side to work on: \(\frac{2}{\cos\left(A\right)}=2\sec\left(A\right)\) - step2: Choose the other side to work on: \(\frac{2}{\cos\left(A\right)}=\frac{2}{\cos\left(A\right)}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sec^4 A-\sec^2 A=\tan^4 A+\tan^2 A \) is always true. Verify the identity by following steps: - step0: Verify: \(\sec^{4}\left(A\right)-\sec^{2}\left(A\right)=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\) - step1: Choose a side to work on: \(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\) - step2: Choose the other side to work on: \(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (1-\cos^2 A)(1+\tan^2 A)=\tan^2 A \) is always true. Verify the identity by following steps: - step0: Verify: \(\left(1-\cos^{2}\left(A\right)\right)\left(1+\tan^{2}\left(A\right)\right)=\tan^{2}\left(A\right)\) - step1: Choose a side to work on: \(\tan^{2}\left(A\right)=\tan^{2}\left(A\right)\) - step2: Verify the identity: \(\textrm{true}\) Here are the results for the provided equations: 1. **Equation d:** \[ (1 - \cos^2 A)(1 + \tan^2 A) = \tan^2 A \] - **Result:** True 2. **Equation e:** \[ \cos^4 \theta + \sin^4 \theta = 1 - 2 \sin^2 \theta \cos^2 \theta \] - **Result:** True 3. **Equation f:** \[ \sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A \] - **Result:** True 4. **Equation g:** \[ \cos A \operatorname{cosec} A \sqrt{\sec^2 \theta - 1} = 1 \] - **Result:** Service not available for this calculation. 5. **Equation h:** \[ \frac{\cos A}{1 - \sin A} + \frac{\cos A}{1 + \sin A} = 2 \sec A \] - **Result:** True 6. **Equation i:** \[ \frac{1}{1 - \cos A} + \frac{1}{1 + \cos A} = 2 \operatorname{cosec}^2 A \] - **Result:** Calculation timeout. The calculation may be too complex. 7. **Equation j:** \[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{1 + \tan \theta}{1 - \tan \theta} \] - **Result:** Service not available for this calculation. 8. **Equation k:** \[ \frac{1 - \tan \beta}{1 + \tan \beta} = \frac{\cot \beta - 1}{\cot \beta + 1} \] - **Result:** Service not available for this calculation. 9. **Equation l:** \[ \frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} = \tan \alpha \tan \beta \] - **Result:** Service not available for this calculation. 10. **Equation m:** \[ \frac{1 - \sin \alpha}{\cos \alpha} = 1 + 2 \tan^2 \alpha \] - **Result:** Service not available for this calculation. ### Summary: - Equations d, e, f, and h are confirmed to be true. - Equations g, i, j, k, l, and m could not be evaluated due to service unavailability or timeout issues. If you need further assistance or specific evaluations, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that the foundation of trigonometric identities dates back to ancient civilizations? The Babylonians used a base-60 number system, which influenced their mathematical works, leading to the development of sine and cosine functions! Fast forward to the 16th century, when mathematicians like the Indian scholar Madhava formalized these concepts, setting the groundwork for modern trigonometry. So next time you’re crunching numbers with angles, you’re tapping into a rich history of mathematical exploration! Trigonometric identities aren’t just for the classroom; they have thrilling real-world applications! Architects utilize these identities to create stable and aesthetically pleasing structures, ensuring that buildings can withstand forces like wind and gravity. In the field of sound and acoustics, understanding wave functions and their properties can lead to designing concert halls with perfect acoustics. So, whether you’re building a skyscraper or bopping along to your favorite song, trigonometric identities are quietly working their magic behind the scenes!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy