Pregunta
upstudy study bank question image url

d. \( \left(1-\cos ^{2} A\right)\left(1+\tan ^{2} A\right)=\tan ^{2} A \) e. \( \cos ^{4} \theta+\sin ^{4} \theta=1-2 \sin ^{2} \theta \cos ^{2} \theta \) f. \( \sec ^{4} A-\sec ^{2} A=\tan ^{4} A+\tan ^{2} A \) g. \( \cos A \operatorname{cosec} A \sqrt{\sec ^{2} \theta-1}=1 \) h. \( \frac{\cos A}{1-\sin A}+\frac{\cos A}{1+\sin A}=2 \sec A \) i. \( \frac{1}{1-\cos A}+\frac{1}{1+\cos A}=2 \operatorname{cosec}^{2} A \) j. \( \frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}=\frac{1+\tan \theta}{1-\tan \theta} \) k. \( \frac{1-\tan \beta}{1+\tan \beta}=\frac{\cot \beta-1}{\cot \beta+1} \) 1. \( \frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot \beta}=\tan \alpha \tan \beta \) m. \( \frac{1-\sin \alpha}{\cos \alpha}=1+2 \tan ^{2} \alpha \)

Ask by Mccoy Gibson. in Nepal
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results for the provided equations: 1. **Equation d:** True 2. **Equation e:** True 3. **Equation f:** True 4. **Equation g:** Cannot evaluate 5. **Equation h:** True 6. **Equation i:** Cannot evaluate 7. **Equation j:** Cannot evaluate 8. **Equation k:** Cannot evaluate 9. **Equation l:** Cannot evaluate 10. **Equation m:** Cannot evaluate Summary: - Equations d, e, f, and h are true. - Equations g, i, j, k, l, and m could not be evaluated due to service issues.

Solución

Verify the identity by following steps: - step0: Verify: \(\cos^{4}\left(\theta \right)+\sin^{4}\left(\theta \right)=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\) - step1: Choose a side to work on: \(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-2\sin^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\) - step2: Choose the other side to work on: \(1-\frac{\sin^{2}\left(2\theta \right)}{2}=1-\frac{\sin^{2}\left(2\theta \right)}{2}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (\cos A)/(1-\sin A)+(\cos A)/(1+\sin A)=2 \sec A \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{\left(\cos\left(A\right)\right)}{\left(1-\sin\left(A\right)\right)}+\frac{\left(\cos\left(A\right)\right)}{\left(1+\sin\left(A\right)\right)}=2\sec\left(A\right)\) - step1: Choose a side to work on: \(\frac{2}{\cos\left(A\right)}=2\sec\left(A\right)\) - step2: Choose the other side to work on: \(\frac{2}{\cos\left(A\right)}=\frac{2}{\cos\left(A\right)}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \sec^4 A-\sec^2 A=\tan^4 A+\tan^2 A \) is always true. Verify the identity by following steps: - step0: Verify: \(\sec^{4}\left(A\right)-\sec^{2}\left(A\right)=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\) - step1: Choose a side to work on: \(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=\tan^{4}\left(A\right)+\tan^{2}\left(A\right)\) - step2: Choose the other side to work on: \(-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}=-\frac{\sin^{2}\left(A\right)}{\left(-\cos^{2}\left(A\right)\right)^{2}}\) - step3: Verify the identity: \(\textrm{true}\) Determine whether the expression \( (1-\cos^2 A)(1+\tan^2 A)=\tan^2 A \) is always true. Verify the identity by following steps: - step0: Verify: \(\left(1-\cos^{2}\left(A\right)\right)\left(1+\tan^{2}\left(A\right)\right)=\tan^{2}\left(A\right)\) - step1: Choose a side to work on: \(\tan^{2}\left(A\right)=\tan^{2}\left(A\right)\) - step2: Verify the identity: \(\textrm{true}\) Here are the results for the provided equations: 1. **Equation d:** \[ (1 - \cos^2 A)(1 + \tan^2 A) = \tan^2 A \] - **Result:** True 2. **Equation e:** \[ \cos^4 \theta + \sin^4 \theta = 1 - 2 \sin^2 \theta \cos^2 \theta \] - **Result:** True 3. **Equation f:** \[ \sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A \] - **Result:** True 4. **Equation g:** \[ \cos A \operatorname{cosec} A \sqrt{\sec^2 \theta - 1} = 1 \] - **Result:** Service not available for this calculation. 5. **Equation h:** \[ \frac{\cos A}{1 - \sin A} + \frac{\cos A}{1 + \sin A} = 2 \sec A \] - **Result:** True 6. **Equation i:** \[ \frac{1}{1 - \cos A} + \frac{1}{1 + \cos A} = 2 \operatorname{cosec}^2 A \] - **Result:** Calculation timeout. The calculation may be too complex. 7. **Equation j:** \[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{1 + \tan \theta}{1 - \tan \theta} \] - **Result:** Service not available for this calculation. 8. **Equation k:** \[ \frac{1 - \tan \beta}{1 + \tan \beta} = \frac{\cot \beta - 1}{\cot \beta + 1} \] - **Result:** Service not available for this calculation. 9. **Equation l:** \[ \frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} = \tan \alpha \tan \beta \] - **Result:** Service not available for this calculation. 10. **Equation m:** \[ \frac{1 - \sin \alpha}{\cos \alpha} = 1 + 2 \tan^2 \alpha \] - **Result:** Service not available for this calculation. ### Summary: - Equations d, e, f, and h are confirmed to be true. - Equations g, i, j, k, l, and m could not be evaluated due to service unavailability or timeout issues. If you need further assistance or specific evaluations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the foundation of trigonometric identities dates back to ancient civilizations? The Babylonians used a base-60 number system, which influenced their mathematical works, leading to the development of sine and cosine functions! Fast forward to the 16th century, when mathematicians like the Indian scholar Madhava formalized these concepts, setting the groundwork for modern trigonometry. So next time you’re crunching numbers with angles, you’re tapping into a rich history of mathematical exploration! Trigonometric identities aren’t just for the classroom; they have thrilling real-world applications! Architects utilize these identities to create stable and aesthetically pleasing structures, ensuring that buildings can withstand forces like wind and gravity. In the field of sound and acoustics, understanding wave functions and their properties can lead to designing concert halls with perfect acoustics. So, whether you’re building a skyscraper or bopping along to your favorite song, trigonometric identities are quietly working their magic behind the scenes!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad