Question
upstudy study bank question image url

(b) Calculate the value of each of the following, without the us (1) \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \) (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \)

Ask by Hart Edwards. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The values are approximately: 1. 0.127 2. 1.698 3. 14.950 4. 5.157

Solution

Calculate the value by following steps: - step0: Calculate: \(\frac{\tan\left(160\right)\cos\left(2000\right)}{\sin\left(340\right)}\) - step1: Transform the expression: \(\frac{\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)}}{\sin\left(340\right)}\) - step2: Multiply by the reciprocal: \(\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)}\times \frac{1}{\sin\left(340\right)}\) - step3: Multiply the terms: \(\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)\sin\left(340\right)}\) - step4: Transform the expression: \(\frac{\cos\left(2000\right)\tan\left(160\right)}{\sin\left(340\right)}\) - step5: Transform the expression: \(\cos\left(2000\right)\tan\left(160\right)\csc\left(340\right)\) Calculate or simplify the expression \( \tan(365) + \cos(85) / \cos(185) \). Calculate the value by following steps: - step0: Calculate: \(\tan\left(365\right)+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step1: Reduce fractions to a common denominator: \(\frac{\tan\left(365\right)\cos\left(185\right)}{\cos\left(185\right)}+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step2: Transform the expression: \(\frac{\tan\left(365\right)\cos\left(185\right)+\cos\left(85\right)}{\cos\left(185\right)}\) - step3: Calculate the trigonometric value: \(1.69784\) Calculate or simplify the expression \( (\sin(40)^2 + \sin(130)^2) / (\tan(315) * \cos(210)^2) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(40^{2}\right)+\sin\left(130^{2}\right)\right)}{\left(\tan\left(315\right)\cos\left(210^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(40^{2}\right)+\sin\left(130^{2}\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(-7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step3: Calculate: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step4: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\frac{\sin\left(315\right)\cos\left(210^{2}\right)}{\cos\left(315\right)}}\) - step5: Multiply by the reciprocal: \(2\sin\left(9250\right)\cos\left(7650\right)\times \frac{\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step6: Multiply the terms: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step7: Transform the expression: \(\frac{\sin\left(9250\right)\cos\left(7650\right)\times 2\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step8: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step9: Transform the expression: \(2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)\sec\left(210^{2}\right)\) Calculate or simplify the expression \( (\sin(10)^2 + \sin(100)^2 - \cos(200)^2) / (\sin(-20) * \cos(250)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)\right)}{\left(\sin\left(-20\right)\cos\left(250\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(5050\right)\cos\left(-4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step3: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step4: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step5: Evaluate the power: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step6: Rewrite the fraction: \(-\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{\sin\left(20\right)\cos\left(250\right)}\) - step7: Transform the expression: \(\frac{\cos\left(40000\right)-2\sin\left(5050\right)\cos\left(4950\right)}{\sin\left(20\right)\cos\left(250\right)}\) Let's calculate each expression step by step. ### (1) \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \) 1. **Calculate \( \tan 160^{\circ} \)**: - \( \tan 160^{\circ} \) is negative since it is in the second quadrant. 2. **Calculate \( \cos 2000^{\circ} \)**: - \( 2000^{\circ} \) can be simplified by subtracting \( 1800^{\circ} \) (which is \( 5 \times 360^{\circ} \)), resulting in \( 2000 - 1800 = 200^{\circ} \). - \( \cos 200^{\circ} \) is negative. 3. **Calculate \( \sin 340^{\circ} \)**: - \( \sin 340^{\circ} = \sin(360^{\circ} - 20^{\circ}) = -\sin 20^{\circ} \). Putting it all together: \[ \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \approx 0.127084 \] ### (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) 1. **Calculate \( \tan 365^{\circ} \)**: - \( \tan 365^{\circ} = \tan(360^{\circ} + 5^{\circ}) = \tan 5^{\circ} \). 2. **Calculate \( \cos 85^{\circ} \) and \( \cos 185^{\circ} \)**: - \( \cos 85^{\circ} \) is positive and \( \cos 185^{\circ} \) is negative. Putting it all together: \[ \tan 365^{\circ} + \frac{\cos 85^{\circ}}{\cos 185^{\circ}} \approx 1.69784 \] ### (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) 1. **Calculate \( \sin^{2} 40^{\circ} \) and \( \sin^{2} 130^{\circ} \)**: - \( \sin 130^{\circ} = \sin(180^{\circ} - 50^{\circ}) = \sin 50^{\circ} \). 2. **Calculate \( \tan 315^{\circ} \)**: - \( \tan 315^{\circ} = -1 \). 3. **Calculate \( \cos^{2} 210^{\circ} \)**: - \( \cos 210^{\circ} \) is negative. Putting it all together: \[ \frac{\sin^{2} 40^{\circ} + \sin^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos^{2} 210^{\circ}} \approx 14.949804 \] ### (7) \( \frac{\sin^{2} 10^{\circ}+\sin^{2} 100^{\circ}-\cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \) 1. **Calculate \( \sin^{2} 10^{\circ} \) and \( \sin^{2} 100^{\circ} \)**: - \( \sin 100^{\circ} = \sin(90^{\circ} + 10^{\circ}) = \cos 10^{\circ} \). 2. **Calculate \( \cos^{2} 200^{\circ} \)**: - \( \cos 200^{\circ} \) is negative. 3. **Calculate \( \sin(-20^{\circ}) \) and \( \cos 250^{\circ} \)**: - \( \sin(-20^{\circ}) = -\sin 20^{\circ} \) and \( \cos 250^{\circ} \) is negative. Putting it all together: \[ \frac{\sin^{2} 10^{\circ} + \sin^{2} 100^{\circ} - \cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \approx 5.156911 \] ### Summary of Results: 1. \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \approx 0.127084 \) 2. \( \tan 365^{\circ} + \frac{\cos 85^{\circ}}{\cos 185^{\circ}} \approx 1.69784 \) 3. \( \frac{\sin^{2} 40^{\circ} + \sin^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos^{2} 210^{\circ}} \approx 14.949804 \) 4. \( \frac{\sin^{2} 10^{\circ} + \sin^{2} 100^{\circ} - \cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \approx 5.156911 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To calculate the values of the given expressions, let’s simplify each one step by step: 1. For \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \): - \( \tan 160^{\circ} = -\tan 20^{\circ} \) (since \(\tan(180°-x) = -\tan x\)). - \( \cos 2000^{\circ} = \cos(2000 - 5 \cdot 360) = \cos 280^{\circ} = -\sin 10^{\circ} \) (since \(\cos(270° + x) = -\sin x\)). - \( \sin 340^{\circ} = -\sin 20^{\circ} \) (since \(\sin(360° - x) = -\sin x\)). - Thus, the expression simplifies to \( \frac{(-\tan 20^{\circ})(-\sin 10^{\circ})}{-\sin 20^{\circ}} = \frac{\tan 20^{\circ} \sin 10^{\circ}}{\sin 20^{\circ}} \). - Since \( \tan 20^{\circ} = \frac{\sin 20^{\circ}}{\cos 20^{\circ}} \), the final result becomes \( \frac{\sin 10^{\circ}}{\cos 20^{\circ}} \). 2. For \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \): - \( \tan 365^{\circ} = \tan(365 - 360) = \tan 5^{\circ} \). - \( \cos 85^{\circ} = \sin 5^{\circ} \) and \( \cos 185^{\circ} = -\cos 5^{\circ} \) (since \(\cos(180° + x) = -\cos x\)). - This makes \( \frac{\cos 85^{\circ}}{\cos 185^{\circ}} = \frac{\sin 5^{\circ}}{-\cos 5^{\circ}} = -\tan 5^{\circ} \). - So the entire expression simplifies to \( \tan 5^{\circ} - \tan 5^{\circ} = 0 \). 3. For \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \): - \( \sin 130^{\circ} = \sin 50^{\circ} \) and \( \sin^{2} 130^{\circ} = \sin^{2} 50^{\circ} \). - Therefore, \( \sin^{2} 40^{\circ} + \sin^{2} 130^{\circ} = \sin^{2} 40^{\circ} + \sin^{2} 50^{\circ} \). Using the identity \( \sin^2 x + \cos^2 x = 1 \), we find: - The denominator behaves as \( \tan 315^{\circ} = -1 \) and \( \cos 210^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2} \), giving: - \( \frac{(1)}{(-1)(-\frac{3}{4})} = \frac{4}{3} \). 4. For \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \): - \( \sin^{2} 100^{\circ} = \sin^{2} 80^{\circ} \) and \( \cos^{2} 200^{\circ} = \sin^{2} 10^{\circ} \), so the numerator simplifies to \( \sin^{2} 10^{\circ} + \sin^{2} 80^{\circ} - \sin^{2} 10^{\circ} = \sin^{2} 80^{\circ} \). - \( \sin(-20^{\circ}) = -\sin(20

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy