Pregunta
upstudy study bank question image url

(b) Calculate the value of each of the following, without the us (1) \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \) (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) (7) \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \)

Ask by Hart Edwards. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The values are approximately: 1. 0.127 2. 1.698 3. 14.950 4. 5.157

Solución

Calculate the value by following steps: - step0: Calculate: \(\frac{\tan\left(160\right)\cos\left(2000\right)}{\sin\left(340\right)}\) - step1: Transform the expression: \(\frac{\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)}}{\sin\left(340\right)}\) - step2: Multiply by the reciprocal: \(\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)}\times \frac{1}{\sin\left(340\right)}\) - step3: Multiply the terms: \(\frac{\sin\left(160\right)\cos\left(2000\right)}{\cos\left(160\right)\sin\left(340\right)}\) - step4: Transform the expression: \(\frac{\cos\left(2000\right)\tan\left(160\right)}{\sin\left(340\right)}\) - step5: Transform the expression: \(\cos\left(2000\right)\tan\left(160\right)\csc\left(340\right)\) Calculate or simplify the expression \( \tan(365) + \cos(85) / \cos(185) \). Calculate the value by following steps: - step0: Calculate: \(\tan\left(365\right)+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step1: Reduce fractions to a common denominator: \(\frac{\tan\left(365\right)\cos\left(185\right)}{\cos\left(185\right)}+\frac{\cos\left(85\right)}{\cos\left(185\right)}\) - step2: Transform the expression: \(\frac{\tan\left(365\right)\cos\left(185\right)+\cos\left(85\right)}{\cos\left(185\right)}\) - step3: Calculate the trigonometric value: \(1.69784\) Calculate or simplify the expression \( (\sin(40)^2 + \sin(130)^2) / (\tan(315) * \cos(210)^2) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(40^{2}\right)+\sin\left(130^{2}\right)\right)}{\left(\tan\left(315\right)\cos\left(210^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(40^{2}\right)+\sin\left(130^{2}\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(-7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step3: Calculate: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\tan\left(315\right)\cos\left(210^{2}\right)}\) - step4: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)}{\frac{\sin\left(315\right)\cos\left(210^{2}\right)}{\cos\left(315\right)}}\) - step5: Multiply by the reciprocal: \(2\sin\left(9250\right)\cos\left(7650\right)\times \frac{\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step6: Multiply the terms: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cos\left(315\right)}{\sin\left(315\right)\cos\left(210^{2}\right)}\) - step7: Transform the expression: \(\frac{\sin\left(9250\right)\cos\left(7650\right)\times 2\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step8: Transform the expression: \(\frac{2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)}{\cos\left(210^{2}\right)}\) - step9: Transform the expression: \(2\sin\left(9250\right)\cos\left(7650\right)\cot\left(315\right)\sec\left(210^{2}\right)\) Calculate or simplify the expression \( (\sin(10)^2 + \sin(100)^2 - \cos(200)^2) / (\sin(-20) * \cos(250)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)\right)}{\left(\sin\left(-20\right)\cos\left(250\right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(10^{2}\right)+\sin\left(100^{2}\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step2: Transform the expression: \(\frac{2\sin\left(5050\right)\cos\left(-4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step3: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{\sin\left(-20\right)\cos\left(250\right)}\) - step4: Calculate: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(200^{2}\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step5: Evaluate the power: \(\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{-\sin\left(20\right)\cos\left(250\right)}\) - step6: Rewrite the fraction: \(-\frac{2\sin\left(5050\right)\cos\left(4950\right)-\cos\left(40000\right)}{\sin\left(20\right)\cos\left(250\right)}\) - step7: Transform the expression: \(\frac{\cos\left(40000\right)-2\sin\left(5050\right)\cos\left(4950\right)}{\sin\left(20\right)\cos\left(250\right)}\) Let's calculate each expression step by step. ### (1) \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \) 1. **Calculate \( \tan 160^{\circ} \)**: - \( \tan 160^{\circ} \) is negative since it is in the second quadrant. 2. **Calculate \( \cos 2000^{\circ} \)**: - \( 2000^{\circ} \) can be simplified by subtracting \( 1800^{\circ} \) (which is \( 5 \times 360^{\circ} \)), resulting in \( 2000 - 1800 = 200^{\circ} \). - \( \cos 200^{\circ} \) is negative. 3. **Calculate \( \sin 340^{\circ} \)**: - \( \sin 340^{\circ} = \sin(360^{\circ} - 20^{\circ}) = -\sin 20^{\circ} \). Putting it all together: \[ \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \approx 0.127084 \] ### (3) \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \) 1. **Calculate \( \tan 365^{\circ} \)**: - \( \tan 365^{\circ} = \tan(360^{\circ} + 5^{\circ}) = \tan 5^{\circ} \). 2. **Calculate \( \cos 85^{\circ} \) and \( \cos 185^{\circ} \)**: - \( \cos 85^{\circ} \) is positive and \( \cos 185^{\circ} \) is negative. Putting it all together: \[ \tan 365^{\circ} + \frac{\cos 85^{\circ}}{\cos 185^{\circ}} \approx 1.69784 \] ### (5) \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \) 1. **Calculate \( \sin^{2} 40^{\circ} \) and \( \sin^{2} 130^{\circ} \)**: - \( \sin 130^{\circ} = \sin(180^{\circ} - 50^{\circ}) = \sin 50^{\circ} \). 2. **Calculate \( \tan 315^{\circ} \)**: - \( \tan 315^{\circ} = -1 \). 3. **Calculate \( \cos^{2} 210^{\circ} \)**: - \( \cos 210^{\circ} \) is negative. Putting it all together: \[ \frac{\sin^{2} 40^{\circ} + \sin^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos^{2} 210^{\circ}} \approx 14.949804 \] ### (7) \( \frac{\sin^{2} 10^{\circ}+\sin^{2} 100^{\circ}-\cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \) 1. **Calculate \( \sin^{2} 10^{\circ} \) and \( \sin^{2} 100^{\circ} \)**: - \( \sin 100^{\circ} = \sin(90^{\circ} + 10^{\circ}) = \cos 10^{\circ} \). 2. **Calculate \( \cos^{2} 200^{\circ} \)**: - \( \cos 200^{\circ} \) is negative. 3. **Calculate \( \sin(-20^{\circ}) \) and \( \cos 250^{\circ} \)**: - \( \sin(-20^{\circ}) = -\sin 20^{\circ} \) and \( \cos 250^{\circ} \) is negative. Putting it all together: \[ \frac{\sin^{2} 10^{\circ} + \sin^{2} 100^{\circ} - \cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \approx 5.156911 \] ### Summary of Results: 1. \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \approx 0.127084 \) 2. \( \tan 365^{\circ} + \frac{\cos 85^{\circ}}{\cos 185^{\circ}} \approx 1.69784 \) 3. \( \frac{\sin^{2} 40^{\circ} + \sin^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos^{2} 210^{\circ}} \approx 14.949804 \) 4. \( \frac{\sin^{2} 10^{\circ} + \sin^{2} 100^{\circ} - \cos^{2} 200^{\circ}}{\sin(-20^{\circ}) \cdot \cos 250^{\circ}} \approx 5.156911 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the values of the given expressions, let’s simplify each one step by step: 1. For \( \frac{\tan 160^{\circ} \cdot \cos 2000^{\circ}}{\sin 340^{\circ}} \): - \( \tan 160^{\circ} = -\tan 20^{\circ} \) (since \(\tan(180°-x) = -\tan x\)). - \( \cos 2000^{\circ} = \cos(2000 - 5 \cdot 360) = \cos 280^{\circ} = -\sin 10^{\circ} \) (since \(\cos(270° + x) = -\sin x\)). - \( \sin 340^{\circ} = -\sin 20^{\circ} \) (since \(\sin(360° - x) = -\sin x\)). - Thus, the expression simplifies to \( \frac{(-\tan 20^{\circ})(-\sin 10^{\circ})}{-\sin 20^{\circ}} = \frac{\tan 20^{\circ} \sin 10^{\circ}}{\sin 20^{\circ}} \). - Since \( \tan 20^{\circ} = \frac{\sin 20^{\circ}}{\cos 20^{\circ}} \), the final result becomes \( \frac{\sin 10^{\circ}}{\cos 20^{\circ}} \). 2. For \( \tan 365^{\circ}+\frac{\cos 85^{\circ}}{\cos 185^{\circ}} \): - \( \tan 365^{\circ} = \tan(365 - 360) = \tan 5^{\circ} \). - \( \cos 85^{\circ} = \sin 5^{\circ} \) and \( \cos 185^{\circ} = -\cos 5^{\circ} \) (since \(\cos(180° + x) = -\cos x\)). - This makes \( \frac{\cos 85^{\circ}}{\cos 185^{\circ}} = \frac{\sin 5^{\circ}}{-\cos 5^{\circ}} = -\tan 5^{\circ} \). - So the entire expression simplifies to \( \tan 5^{\circ} - \tan 5^{\circ} = 0 \). 3. For \( \frac{\sin ^{2} 40^{\circ}+\sin ^{2} 130^{\circ}}{\tan 315^{\circ} \cdot \cos ^{2} 210^{\circ}} \): - \( \sin 130^{\circ} = \sin 50^{\circ} \) and \( \sin^{2} 130^{\circ} = \sin^{2} 50^{\circ} \). - Therefore, \( \sin^{2} 40^{\circ} + \sin^{2} 130^{\circ} = \sin^{2} 40^{\circ} + \sin^{2} 50^{\circ} \). Using the identity \( \sin^2 x + \cos^2 x = 1 \), we find: - The denominator behaves as \( \tan 315^{\circ} = -1 \) and \( \cos 210^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2} \), giving: - \( \frac{(1)}{(-1)(-\frac{3}{4})} = \frac{4}{3} \). 4. For \( \frac{\sin ^{2} 10^{\circ}+\sin ^{2} 100^{\circ}-\cos ^{2} 200^{\circ}}{\sin \left(-20^{\circ}\right) \cdot \cos 250^{\circ}} \): - \( \sin^{2} 100^{\circ} = \sin^{2} 80^{\circ} \) and \( \cos^{2} 200^{\circ} = \sin^{2} 10^{\circ} \), so the numerator simplifies to \( \sin^{2} 10^{\circ} + \sin^{2} 80^{\circ} - \sin^{2} 10^{\circ} = \sin^{2} 80^{\circ} \). - \( \sin(-20^{\circ}) = -\sin(20

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad