Question
upstudy study bank question image url

\( \lim _ { x \rightarrow - \infty } \frac { x ^ { 2 } + 1 } { e ^ { x } } \)

Ask by Ramirez May. in Greece
Mar 08,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El límite es infinito positivo.

Solution

1. Analizamos el límite: \[ \lim_{x \rightarrow -\infty} \frac{x^2 + 1}{e^x} \] 2. Observamos el comportamiento del numerador y del denominador conforme \(x\) tiende a \(-\infty\): - El numerador \(x^2+1\) tiende a \(+\infty\) ya que \(x^2\) crece sin límite cuando \(x\) se aleja de cero, incluso si \(x\) es negativo. - El denominador \(e^x\) tiende a \(0\) (de forma positiva) ya que \(e^x\) decrece exponencialmente cuando \(x \rightarrow -\infty\). 3. Dado que el numerador se hace infinitamente grande y el denominador se hace infinitamente pequeño (positivo), la fracción en su conjunto tiende a \(+\infty\). 4. Por lo tanto, concluimos: \[ \lim_{x \rightarrow -\infty} \frac{x^2 + 1}{e^x} = +\infty. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the limit \( \lim _ { x \rightarrow - \infty } \frac { x ^ { 2 } + 1 } { e ^ { x } } \), we first notice that as \( x \) approaches \(-\infty\), \( e^x \) approaches 0, while \( x^2 + 1 \) approaches infinity. This suggests that the growth of the numerator is outpaced by the rapid decay of the denominator. We can analyze this formally: 1. Focus on the term in the numerator, \( x^2 + 1 \), which behaves like \( x^2 \) for large values of \( |x| \). 2. Rewrite the limit as \( \lim _ { x \rightarrow -\infty } \frac { x^2 } { e^x } \). Now, applying L'Hôpital's Rule since both the numerator and the denominator tend to infinity: - Differentiate the numerator: \( \frac{d}{dx}(x^2) = 2x \). - Differentiate the denominator: \( \frac{d}{dx}(e^x) = e^x \). Now we have: \[ \lim _ { x \rightarrow -\infty } \frac { 2x } { e^x } \] This limit, in itself, again yields an indeterminate form \(-\infty / 0\), so we apply L'Hôpital's Rule once more: - Differentiate the numerator again: \( \frac{d}{dx}(2x) = 2 \). - Differentiate the denominator again: \( \frac{d}{dx}(e^x) = e^x \). Now we compute: \[ \lim _ { x \rightarrow -\infty } \frac { 2 } { e^x } = 0 \] Thus, returning to our original limit, we conclude: \[ \lim _ { x \rightarrow -\infty } \frac { x ^ { 2 } + 1 } { e ^ { x } } = 0. \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy