Pregunta
upstudy study bank question image url

CEOMETRT: Matrix multiplication can be used to rotate figures in the plane. What is the matrix product?

Ask by Warner Gibbs. in the United States
Jan 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Matrix multiplication combines two rotation angles by adding them, resulting in a single rotation matrix that represents the combined rotation.

Solución

Certainly! Matrix multiplication is a fundamental tool in linear algebra, especially for performing transformations such as rotations in the plane. Let's delve into how matrix multiplication achieves the rotation of figures in a two-dimensional plane. ## **Rotation Matrices in 2D** A **rotation matrix** \( R(\theta) \) rotates a point in the plane by an angle \( \theta \) (in radians) about the origin. The standard rotation matrix is defined as: \[ R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \\ \end{bmatrix} \] ## **Matrix Multiplication for Rotation** When you want to perform two consecutive rotations—first by an angle \( \theta \) and then by an angle \( \phi \)—you can achieve this by multiplying their corresponding rotation matrices. Let's define the two rotation matrices: \[ R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \\ \end{bmatrix}, \quad R(\phi) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \\ \end{bmatrix} \] **Multiplying \( R(\theta) \) and \( R(\phi) \):** \[ R(\theta) \cdot R(\phi) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \\ \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \\ \end{bmatrix} \] **Calculating the Product:** 1. **First Row, First Column:** \[ (\cos\theta \cdot \cos\phi) + (-\sin\theta \cdot \sin\phi) = \cos\theta\cos\phi - \sin\theta\sin\phi = \cos(\theta + \phi) \] 2. **First Row, Second Column:** \[ (\cos\theta \cdot -\sin\phi) + (-\sin\theta \cdot \cos\phi) = -\cos\theta\sin\phi - \sin\theta\cos\phi = -\sin(\theta + \phi) \] 3. **Second Row, First Column:** \[ (\sin\theta \cdot \cos\phi) + (\cos\theta \cdot \sin\phi) = \sin\theta\cos\phi + \cos\theta\sin\phi = \sin(\theta + \phi) \] 4. **Second Row, Second Column:** \[ (\sin\theta \cdot -\sin\phi) + (\cos\theta \cdot \cos\phi) = -\sin\theta\sin\phi + \cos\theta\cos\phi = \cos(\theta + \phi) \] **Putting It All Together:** \[ R(\theta) \cdot R(\phi) = \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \\ \end{bmatrix} = R(\theta + \phi) \] ## **Interpretation** The product \( R(\theta) \cdot R(\phi) \) results in a new rotation matrix \( R(\theta + \phi) \), which means that applying two consecutive rotations—first by \( \theta \) and then by \( \phi \)—is equivalent to a single rotation by the angle \( \theta + \phi \). ## **Example** Suppose you want to rotate a figure first by \( 30^\circ \) and then by \( 45^\circ \). 1. Convert degrees to radians: \[ 30^\circ = \frac{\pi}{6} \text{ radians}, \quad 45^\circ = \frac{\pi}{4} \text{ radians} \] 2. Multiply the rotation matrices: \[ R\left(\frac{\pi}{6}\right) \cdot R\left(\frac{\pi}{4}\right) = R\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = R\left(\frac{5\pi}{12}\right) \] This demonstrates that the combined rotation is \( 75^\circ \), which is the sum of \( 30^\circ \) and \( 45^\circ \). ## **Conclusion** Matrix multiplication effectively combines multiple rotations into a single rotation by adding their respective angles. This property is highly useful in computer graphics, robotics, and various fields of engineering and physics where composite rotations are common.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In linear algebra, the matrix product is a way to combine two matrices to produce a new matrix. To multiply two matrices, the number of columns in the first matrix must equal the number of rows in the second. The resulting matrix's element at row \(i\) and column \(j\) is calculated by taking the dot product of the \(i\)-th row of the first matrix and the \(j\)-th column of the second matrix. This is a fundamental operation that has profound implications in various fields, including graphics and physics. Matrix multiplication is often applied in computer graphics, particularly for rotating, scaling, and translating images. By representing transformations as matrices, you can apply these transformations to geometric figures using matrix multiplication. For instance, to rotate a 2D point around the origin, you multiply it by a rotation matrix. This elegant and efficient method allows for complex transformations and is a foundational concept in game development, animation, and robotics, making it essential for bringing visuals to life!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad