Fully simplify. \[ \left(-4 x^{3} y^{5}\right)^{4} \] Answer \begin{tabular}{l} Attempt 1 out of 3 \\ \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let’s break this expression down! When you have \(\left(-4 x^{3} y^{5}\right)^{4}\), you want to apply the exponent to each part inside the parentheses. So, you get \((-4)^{4}\), \(x^{3 \cdot 4}\), and \(y^{5 \cdot 4}\). Calculating each part, we find \((-4)^{4} = 256\), \(x^{3 \cdot 4} = x^{12}\), and \(y^{5 \cdot 4} = y^{20}\). Putting it all together, the fully simplified expression is: \[ 256 x^{12} y^{20} \] Now you’re ready to rock with this super simplified form!
