The vertices of a quadrilateral are \( \mathrm{K}(-1,3) \) and 6. \( L(2,3) \) and \( Q(6,-3) \) and \( R(m-1, n-2) \) if \( |K L|=|R Q| \) find \( m \) and \( n \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
First, let's determine the length of segment \( KL \). The distance between points \( K(-1,3) \) and \( L(2,3) \) can be calculated using the distance formula: \[ |KL| = \sqrt{(2 - (-1))^2 + (3 - 3)^2} = \sqrt{(3)^2} = 3. \] Now, since \( |KL| = |RQ| \), we also need to find \( |RQ| \) using the given coordinates of points \( Q(6,-3) \) and \( R(m-1, n-2) \): \[ |RQ| = \sqrt{(6 - (m-1))^2 + (-3 - (n-2))^2}. \] Set this equal to the length \( |KL| \): \[ \sqrt{(6 - (m-1))^2 + (-3 - (n-2))^2} = 3. \] Squaring both sides leads to: \[ (6 - (m-1))^2 + (-3 - (n-2))^2 = 9. \] This simplifies to: \[ (7 - m)^2 + (-1 - n)^2 = 9. \] Now, we can expand and further simplify this: \[ (7 - m)^2 + (n + 1)^2 = 9. \] This equation describes a circle centered at \( (7, -1) \) with a radius of 3. The valid integer solutions for \( m \) and \( n \) that satisfy this equation include the following pairs: 1. \( (m, n) = (4, -1) \) 2. \( (m, n) = (7, 2) \) 3. \( (m, n) = (10, -1) \) 4. \( (m, n) = (7, -4) \) Thus, the possible values for \( (m, n) \) that maintain the condition \( |KL| = |RQ| \) and fall within the circle's constraints are: - \( m = 4, n = -1 \) - \( m = 7, n = 2 \) - \( m = 10, n = -1 \) - \( m = 7, n = -4 \) Here, there are multiple valid pairs that satisfy the original condition.
