Pregunta
upstudy study bank question image url

Part 2 of 3
The function is one-to-one.
a. Find an equation for , the inverse function.
b. Verify that your equation is correct by showing that and .
(OMipmy y
A. IIII, for IIII
B. , for all
C. , for
D. , for
b. Verify that the equation is correct.

Ask by Cook Stuart. in the United States
Mar 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse function is for all .
To verify:
Both compositions confirm that the inverse is correct.

Solución

Let . Then
To find , we swap and :
Now, solve for by subtracting 5 from both sides:
Then divide by 2:
Thus, the inverse function is:
To verify the inverse, we check both compositions:
  1. Compute :
  1. Compute :
Since both compositions return , the inverse is verified.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the inverse function for , we’ll start by setting , or in other words, . To find the inverse, we’ll switch and and solve for :
Now, isolating :
So, the inverse function is
In terms of verification, we substitute back into the original function:
And now, let’s verify the other direction:
Thus, both verifications confirm that we have correctly determined that .
As for the engaging tidbits:
You know, one-to-one functions are like great friends who always return your calls! In mathematics, this means that each output is related to just one input, ensuring no mix-ups—like finding your keys always in one specific spot!
When it comes to real-world applications of inverse functions, think about it: whenever you’re reversing a calculation, whether it’s finding the price before tax or unraveling a mystery, you rely on inverse functions! They help us unlock many secrets, just like solving a good puzzle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad