Find the value of \( t \) for a \( t \)-distribution with 15 degrees of freedom such that the area to the left of \( -t \) plus the area to the right of \( t \) equals 0.05 . Round your answer three decimal places, if necessary. Answer
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the value of \( t \) for a \( t \)-distribution with 15 degrees of freedom such that the area to the left of \( -t \) plus the area to the right of \( t \) equals 0.05, we first recognize that this signifies a two-tailed test. Therefore, the area to the left of \( t \) must equal \( 0.95 \) (since \( 1 - 0.05 = 0.95 \)) for the critical values. Using a \( t \)-table or an inverse \( t \)-distribution calculator for 15 degrees of freedom, we can find the value of \( t \) for the 0.025 tail (as it is split between both tails for a total of 0.05). Looking up \( t_{0.025, 15} \), we find: \( t_{0.025, 15} \approx 2.131 \). Therefore, the value of \( t \) that satisfies the condition is approximately \( 2.131 \). So, the final rounded answer is: \[ t \approx 2.131 \]
