Pregunta
upstudy study bank question image url

the equation of straight line in the form of \( x \cos \alpha+y \sin \alpha=p \).

Ask by Cummings Simpson. in Nepal
Nov 12,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( x \cos \alpha + y \sin \alpha = p \) represents a line in the Cartesian coordinate system, where \( \alpha \) is the angle from the positive x-axis and \( p \) is the perpendicular distance from the origin to the line.

Solución

The equation of a straight line in the form \( x \cos \alpha + y \sin \alpha = p \) represents a line in a two-dimensional Cartesian coordinate system. Here, \( \alpha \) is an angle, and \( p \) is a constant that represents the perpendicular distance from the origin to the line. ### Breakdown of the Equation: 1. **\( \cos \alpha \)** and **\( \sin \alpha \)**: - These terms represent the direction cosines of the angle \( \alpha \). The angle \( \alpha \) is measured from the positive x-axis. - \( \cos \alpha \) gives the x-component of the direction, while \( \sin \alpha \) gives the y-component. 2. **\( p \)**: - The constant \( p \) indicates how far the line is from the origin, measured along the perpendicular dropped from the origin to the line. ### Interpretation: - The line described by this equation is perpendicular to the vector \( (\cos \alpha, \sin \alpha) \) and is at a distance \( p \) from the origin. - If \( p \) is positive, the line is on one side of the origin; if \( p \) is negative, the line is on the opposite side. ### Example: For example, if \( \alpha = 30^\circ \) and \( p = 5 \): - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 30^\circ = \frac{1}{2} \) The equation of the line would be: \[ x \cdot \frac{\sqrt{3}}{2} + y \cdot \frac{1}{2} = 5 \] This can be rearranged to standard linear form if needed. ### Conclusion: The equation \( x \cos \alpha + y \sin \alpha = p \) is a useful representation of a line in terms of its angle and distance from the origin, providing a geometric interpretation of the line's position in the coordinate plane.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

This equation represents a straight line in polar coordinates, where \( \alpha \) is the angle formed with the x-axis and \( p \) is the shortest distance from the origin to the line. It's quite fascinating how this format simplifies many geometric interpretations, especially in applications like computer graphics and robotics, where understanding the orientation of objects is crucial for movement and positioning. In real life, this line equation is handy in fields like physics and engineering, particularly in problems involving forces and vectors. For example, when analyzing forces acting on an object, one can use the line equation to represent the paths of forces and solve for critical factors such as angles and distances, making it a versatile tool in problem-solving scenarios!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad