A doll sold for \( \$ 296 \) in 1976 and was sold again in 1986 for \( \$ 411 \). Assume that the growth in the value \( V \) of the collector's a) Find the value k of the exponential growth rate. Assume \( \mathrm{V}_{0}=296 \). \( \mathrm{k}=0.033 \) (Round to the nearest thousandth.) b) Find the exponential growth function in terms of t , where t is the number of years since 1976 . V(t) \( =296 e^{0.033 t} \) c) Estimate the value of the doll in 2009. \( \$ \square \) (Round to the nearest dollar.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To estimate the value of the doll in 2009, we first determine the number of years since 1976, which would be \( t = 2009 - 1976 = 33 \). Plugging this into the exponential growth function \( V(t) = 296 e^{0.033 t} \): \[ V(33) = 296 e^{0.033 \cdot 33} \] Calculating this: - \( 0.033 \cdot 33 = 1.089 \) - Using the value of \( e^{1.089} \approx 2.975 \), we get: \[ V(33) \approx 296 \cdot 2.975 \approx 880.2 \] Rounding to the nearest dollar, the estimated value of the doll in 2009 is \( \$880 \). So the final answer is: \( \$880 \)
