Pregunta
upstudy study bank question image url

Consider the motion of a soccer ball that is kicked from the point \( \left\langle x_{0}, y_{0}\right\rangle=\langle 0,0\rangle \) with an initial velocity of \( \left\langle u_{0}, v_{0}\right\rangle=\langle 30,8\rangle \mathrm{m} / \mathrm{s} \). Assume the \( x \)-axis is horizontal, the positive \( y \)-axis is vertical (opposite g), the ground is horizontal, and only the gravitational force acts on the object. a. Find the velocity and position vectors for \( t \geq 0 \). b. Graph the trajectory. c. Determine the time of flight and range of the soccer ball. d. Determine the maximum height of the soccer ball. a. The velocity vector is \( \mathbf{v}(\mathrm{t})= \)

Ask by Coles Kirk. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Velocity Vector**: \( \mathbf{v}(t) = \langle 30, 8 - 9.81t \rangle \) - **Position Vector**: \( \mathbf{r}(t) = \langle 30t, 8t - 4.905t^2 \rangle \) - **Time of Flight**: Approximately 1.63 seconds - **Range**: Approximately 48.9 meters - **Maximum Height**: Approximately 6.52 meters

Solución

It seems that I am unable to generate a plot at this moment. However, I can guide you on how to graph the trajectory of the soccer ball using the equations derived. ### Steps to Graph the Trajectory: 1. **Set Up the Axes**: - Draw a horizontal axis (x-axis) for distance and a vertical axis (y-axis) for height. 2. **Calculate Points**: - Use the position equation \( y(t) = 8t - 4.905 t^2 \) to calculate points for various values of \( t \) from \( 0 \) to approximately \( 1.63 \) seconds (the time of flight). - For example: - At \( t = 0 \): \( y(0) = 0 \) - At \( t = 0.5 \): \( y(0.5) = 8(0.5) - 4.905(0.5)^2 \approx 1.975 \) - At \( t = 0.815 \): \( y(0.815) \approx 6.52 \) (maximum height) - At \( t = 1.63 \): \( y(1.63) = 0 \) (returns to ground) 3. **Plot the Points**: - Plot the calculated points on the graph. 4. **Draw the Trajectory**: - Connect the points smoothly to form a parabolic trajectory, which represents the path of the soccer ball. ### Conclusion You now have all the necessary information to graph the trajectory of the soccer ball and understand its motion. If you have access to graphing software or tools, you can input the equations directly to visualize the trajectory. If you need further assistance or have any other questions, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To analyze the motion of the soccer ball, we can decompose the problem into its horizontal and vertical components considering the initial velocity and the effects of gravity. **Velocity Vector:** The horizontal component of the velocity remains constant, while the vertical component changes due to gravity. The velocity vector \( \mathbf{v}(t) \) can be expressed as: \[ \mathbf{v}(t) = \langle u_0, v_0 - gt \rangle = \langle 30, 8 - 9.81t \rangle \text{ m/s} \] where \( g \approx 9.81 \text{ m/s}^2 \) is the acceleration due to gravity. **Position Vector:** To find the position vector \( \mathbf{r}(t) \), we integrate the velocity components: \[ \mathbf{r}(t) = \langle x_0 + u_0 t, y_0 + v_0 t - \frac{1}{2}gt^2 \rangle = \langle 0 + 30t, 0 + 8t - \frac{1}{2}(9.81)t^2 \rangle = \langle 30t, 8t - 4.905t^2 \rangle \] **Trajectory Graph:** To graph the trajectory, you can visualize the path of the soccer ball by plotting the position vector over time. The horizontal distance (x) increases linearly, while the vertical distance (y) follows a parabolic path due to the influence of gravity. **Time of Flight and Range:** To determine the time of flight, set \( y = 0 \): \[ 8t - 4.905t^2 = 0 \implies t(8 - 4.905t) = 0 \implies t = 0 \text{ (initial time)} \text{ or } t = \frac{8}{4.905} \approx 1.63 \text{ seconds} \] The range \( R \) can be calculated with the time of flight: \[ R = u_0 \cdot t = 30 \cdot 1.63 \approx 48.9 \text{ meters} \] **Maximum Height:** To find the maximum height \( H \), first, calculate the time at which the vertical velocity becomes zero: \[ 0 = v_0 - gt \implies t = \frac{v_0}{g} = \frac{8}{9.81} \approx 0.816 \text{ seconds} \] Substituting this back into the y-component of the position: \[ H = 8(0.816) - 4.905(0.816^2) \approx 3.27 \text{ meters} \] Thus, the elements of the ball's motion are captured in these calculations, making it an excellent illustration of projectile motion in physics!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad