The midpoint of \( \overline{G H} \) is \( M(16.5,8.5) \). One endpoint is \( H(20,13) \). Find the coordinates of the other endpoint \( G \). Write the coordinates as decimals or integers.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the coordinates of the other endpoint \( G \), we can use the midpoint formula. The midpoint \( M \) of a line segment between points \( G(x_1, y_1) \) and \( H(x_2, y_2) \) is given by: \[ M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \] Here, we know \( M(16.5, 8.5) \) and \( H(20, 13) \). Let the coordinates of \( G \) be \( (x, y) \). Then, we have: \[ \frac{x + 20}{2} = 16.5 \quad \text{(1)} \] \[ \frac{y + 13}{2} = 8.5 \quad \text{(2)} \] Now, we'll solve for \( x \) and \( y \). From equation (1): \[ x + 20 = 33 \quad \Rightarrow \quad x = 33 - 20 = 13 \] From equation (2): \[ y + 13 = 17 \quad \Rightarrow \quad y = 17 - 13 = 4 \] Thus, the coordinates of endpoint \( G \) are \( G(13, 4) \).
