Pregunta
upstudy study bank question image url

A Walmart employee has decided that they would like to completely fill the ball bin in the toy section with one type of ball. The ball has diameter of 9 inches. The bin is 20 inches tall and the opening at the top is 32 inches by 35 inches. How many balls should fit inside the bin? (Hint: Packina soheres in a rectanautar orism take ud \( 190 \% \) of their volume)

Ask by Sherman Wheeler. in Canada
Jan 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Approximately 30 balls can fit inside the bin.

Solución

To determine how many balls can fit inside the bin, we need to follow these steps: 1. **Calculate the volume of one ball.** The formula for the volume \( V \) of a sphere is given by: \[ V = \frac{4}{3} \pi r^3 \] where \( r \) is the radius of the sphere. The diameter of the ball is 9 inches, so the radius \( r \) is: \[ r = \frac{9}{2} = 4.5 \text{ inches} \] 2. **Calculate the volume of the bin.** The volume \( V \) of a rectangular prism is given by: \[ V = \text{length} \times \text{width} \times \text{height} \] The dimensions of the bin are: - Height = 20 inches - Length = 32 inches - Width = 35 inches 3. **Adjust for packing efficiency.** Since the hint states that packing spheres in a rectangular prism takes up \( 190\% \) of their volume, we will multiply the volume of the balls by \( 1.9 \) to account for this packing efficiency. Now, let's perform the calculations step by step. ### Step 1: Calculate the volume of one ball \[ V_{\text{ball}} = \frac{4}{3} \pi (4.5)^3 \] ### Step 2: Calculate the volume of the bin \[ V_{\text{bin}} = 32 \times 35 \times 20 \] ### Step 3: Calculate the number of balls that fit in the bin The effective volume occupied by the balls will be: \[ V_{\text{effective}} = 1.9 \times V_{\text{ball}} \] The number of balls \( N \) that can fit in the bin is given by: \[ N = \frac{V_{\text{bin}}}{V_{\text{effective}}} \] Now, let's calculate these values. Calculate the value by following steps: - step0: Calculate: \(32\times 35\times 20\) - step1: Multiply the terms: \(1120\times 20\) - step2: Multiply the numbers: \(22400\) Calculate or simplify the expression \( (4/3) * \pi * (4.5)^3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{4}{3}\pi \times 4.5^{3}\) - step1: Convert the expressions: \(\frac{4}{3}\pi \left(\frac{9}{2}\right)^{3}\) - step2: Multiply: \(\frac{4\pi }{3}\left(\frac{9}{2}\right)^{3}\) - step3: Evaluate the power: \(\frac{4\pi }{3}\times \frac{9^{3}}{2^{3}}\) - step4: Rewrite the expression: \(\frac{2^{2}\pi }{3}\times \frac{9^{3}}{2^{3}}\) - step5: Reduce the numbers: \(\frac{\pi }{3}\times \frac{9^{3}}{2}\) - step6: Rewrite the expression: \(\frac{\pi }{3}\times \frac{3^{6}}{2}\) - step7: Reduce the numbers: \(\pi \times \frac{3^{5}}{2}\) - step8: Multiply: \(\frac{\pi \times 3^{5}}{2}\) - step9: Multiply: \(\frac{243\pi }{2}\) Calculate or simplify the expression \( 1.9 * 381.703507 \). Calculate the value by following steps: - step0: Calculate: \(1.9\times 381.703507\) - step1: Multiply the numbers: \(725.2366633\) Calculate or simplify the expression \( 22400 / 725.2366633 \). Calculate the value by following steps: - step0: Calculate: \(\frac{22400}{725.2366633}\) - step1: Convert the expressions: \(\frac{22400}{\frac{7252366633}{10000000}}\) - step2: Multiply by the reciprocal: \(22400\times \frac{10000000}{7252366633}\) - step3: Multiply: \(\frac{22400\times 10000000}{7252366633}\) - step4: Multiply: \(\frac{224000000000}{7252366633}\) Now that we have all the necessary calculations, let's summarize the results: 1. **Volume of one ball:** \[ V_{\text{ball}} \approx 381.70 \text{ cubic inches} \] 2. **Volume of the bin:** \[ V_{\text{bin}} = 22400 \text{ cubic inches} \] 3. **Effective volume occupied by the balls (considering packing efficiency):** \[ V_{\text{effective}} \approx 725.24 \text{ cubic inches} \] 4. **Number of balls that can fit in the bin:** \[ N \approx \frac{22400}{725.24} \approx 30.89 \] Since we cannot have a fraction of a ball, we round down to the nearest whole number. Therefore, the number of balls that should fit inside the bin is: \[ \boxed{30} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate how many 9-inch diameter balls can fit into the bin, we first need to determine the volume of the bin. The dimensions of the bin can be determined by treating the opening as a rectangle. The height is 20 inches, and the base area is 32 inches by 35 inches. That gives us: Volume of bin = Base Area × Height = (32 in × 35 in) × 20 in = 22,400 cubic inches. Next, the volume of a single ball (using the formula for the volume of a sphere, \( V = \frac{4}{3} \pi r^3 \), with a radius of 4.5 inches) is about 381.7 cubic inches. Taking into account the hint about packing efficiency, we multiply the volume of a single ball by 190%: Volume for packing = 381.7 in³ × 1.9 ≈ 726.2 in³. Now, we can find how many balls can fit in the bin by dividing the bin's volume by the adjusted volume per ball: Number of balls = Volume of bin / Adjusted volume per ball = 22,400 in³ / 726.2 in³ ≈ 30.8. Therefore, you can fit approximately 30 balls in the bin when packed effectively!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad