Responder
Approximately 30 balls can fit inside the bin.
Solución
To determine how many balls can fit inside the bin, we need to follow these steps:
1. **Calculate the volume of one ball.**
The formula for the volume \( V \) of a sphere is given by:
\[
V = \frac{4}{3} \pi r^3
\]
where \( r \) is the radius of the sphere. The diameter of the ball is 9 inches, so the radius \( r \) is:
\[
r = \frac{9}{2} = 4.5 \text{ inches}
\]
2. **Calculate the volume of the bin.**
The volume \( V \) of a rectangular prism is given by:
\[
V = \text{length} \times \text{width} \times \text{height}
\]
The dimensions of the bin are:
- Height = 20 inches
- Length = 32 inches
- Width = 35 inches
3. **Adjust for packing efficiency.**
Since the hint states that packing spheres in a rectangular prism takes up \( 190\% \) of their volume, we will multiply the volume of the balls by \( 1.9 \) to account for this packing efficiency.
Now, let's perform the calculations step by step.
### Step 1: Calculate the volume of one ball
\[
V_{\text{ball}} = \frac{4}{3} \pi (4.5)^3
\]
### Step 2: Calculate the volume of the bin
\[
V_{\text{bin}} = 32 \times 35 \times 20
\]
### Step 3: Calculate the number of balls that fit in the bin
The effective volume occupied by the balls will be:
\[
V_{\text{effective}} = 1.9 \times V_{\text{ball}}
\]
The number of balls \( N \) that can fit in the bin is given by:
\[
N = \frac{V_{\text{bin}}}{V_{\text{effective}}}
\]
Now, let's calculate these values.
Calculate the value by following steps:
- step0: Calculate:
\(32\times 35\times 20\)
- step1: Multiply the terms:
\(1120\times 20\)
- step2: Multiply the numbers:
\(22400\)
Calculate or simplify the expression \( (4/3) * \pi * (4.5)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{4}{3}\pi \times 4.5^{3}\)
- step1: Convert the expressions:
\(\frac{4}{3}\pi \left(\frac{9}{2}\right)^{3}\)
- step2: Multiply:
\(\frac{4\pi }{3}\left(\frac{9}{2}\right)^{3}\)
- step3: Evaluate the power:
\(\frac{4\pi }{3}\times \frac{9^{3}}{2^{3}}\)
- step4: Rewrite the expression:
\(\frac{2^{2}\pi }{3}\times \frac{9^{3}}{2^{3}}\)
- step5: Reduce the numbers:
\(\frac{\pi }{3}\times \frac{9^{3}}{2}\)
- step6: Rewrite the expression:
\(\frac{\pi }{3}\times \frac{3^{6}}{2}\)
- step7: Reduce the numbers:
\(\pi \times \frac{3^{5}}{2}\)
- step8: Multiply:
\(\frac{\pi \times 3^{5}}{2}\)
- step9: Multiply:
\(\frac{243\pi }{2}\)
Calculate or simplify the expression \( 1.9 * 381.703507 \).
Calculate the value by following steps:
- step0: Calculate:
\(1.9\times 381.703507\)
- step1: Multiply the numbers:
\(725.2366633\)
Calculate or simplify the expression \( 22400 / 725.2366633 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{22400}{725.2366633}\)
- step1: Convert the expressions:
\(\frac{22400}{\frac{7252366633}{10000000}}\)
- step2: Multiply by the reciprocal:
\(22400\times \frac{10000000}{7252366633}\)
- step3: Multiply:
\(\frac{22400\times 10000000}{7252366633}\)
- step4: Multiply:
\(\frac{224000000000}{7252366633}\)
Now that we have all the necessary calculations, let's summarize the results:
1. **Volume of one ball:**
\[
V_{\text{ball}} \approx 381.70 \text{ cubic inches}
\]
2. **Volume of the bin:**
\[
V_{\text{bin}} = 22400 \text{ cubic inches}
\]
3. **Effective volume occupied by the balls (considering packing efficiency):**
\[
V_{\text{effective}} \approx 725.24 \text{ cubic inches}
\]
4. **Number of balls that can fit in the bin:**
\[
N \approx \frac{22400}{725.24} \approx 30.89
\]
Since we cannot have a fraction of a ball, we round down to the nearest whole number. Therefore, the number of balls that should fit inside the bin is:
\[
\boxed{30}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución