Pregunta
(34) A 6 FOOT (IN DIAMETER) ROTATES AT HOO REVOLUTIONS PER MIMUTE (a) FIND THE ANGULAR SPEED IN RADIANS PER MINUTE (b) FIND LINEAR SPEED IN FEET PER MINUTE
Ask by Mccoy Santiago. in the United States
Feb 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The angular speed is approximately 628.32 radians per minute, and the linear speed is approximately 1884.96 feet per minute.
Solución
To solve the problem, we need to find both the angular speed in radians per minute and the linear speed in feet per minute for a circle with a diameter of 6 feet that rotates at 100 revolutions per minute (RPM).
### Step 1: Extract Known Conditions
- Diameter of the circle, \( d = 6 \) feet
- Radius of the circle, \( r = \frac{d}{2} = \frac{6}{2} = 3 \) feet
- Revolutions per minute, \( n = 100 \) RPM
### Step 2: Find Angular Speed in Radians per Minute
Angular speed \( \omega \) in radians per minute can be calculated using the formula:
\[
\omega = n \times 2\pi
\]
where \( n \) is the number of revolutions per minute and \( 2\pi \) is the number of radians in one revolution.
### Step 3: Find Linear Speed in Feet per Minute
Linear speed \( v \) can be calculated using the formula:
\[
v = r \times \omega
\]
where \( r \) is the radius and \( \omega \) is the angular speed in radians per minute.
Now, let's perform the calculations.
1. Calculate the angular speed \( \omega \).
2. Calculate the linear speed \( v \).
Let's compute these values.
Calculate the value by following steps:
- step0: Calculate:
\(3\left(100\times 2\pi \right)\)
- step1: Remove the parentheses:
\(3\times 100\times 2\pi \)
- step2: Multiply the terms:
\(600\pi \)
Calculate or simplify the expression \( 100 * 2 * \pi \).
Calculate the value by following steps:
- step0: Calculate:
\(100\times 2\pi \)
- step1: Multiply the terms:
\(200\pi \)
### Step 4: Results
1. **Angular Speed**:
- The angular speed \( \omega \) in radians per minute is:
\[
\omega = 100 \times 2\pi \approx 628.32 \text{ radians per minute}
\]
2. **Linear Speed**:
- The linear speed \( v \) in feet per minute is:
\[
v = 3 \times (100 \times 2\pi) \approx 1884.96 \text{ feet per minute}
\]
### Final Answers:
- (a) The angular speed is approximately \( 628.32 \) radians per minute.
- (b) The linear speed is approximately \( 1884.96 \) feet per minute.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the angular speed, you can use the formula for angular speed: \( \omega = 2\pi \times \text{RPM} \). Here, if the rotation is at 100 revolutions per minute (RPM), then the angular speed in radians per minute is \( \omega = 2\pi \times 100 = 200\pi \) radians/minute. For linear speed, the formula is \( v = r \times \omega \). The radius \( r \) of the 6-foot diameter circle is 3 feet. Therefore, substituting in the values gives us \( v = 3 \times (200\pi) = 600\pi \) feet/minute, which is approximately 1884.96 feet/minute.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium