Find the \( x \)-intercept(s). and the coordinates of the vertex for the parabola \( y=x^{2}-6 x+5 \). If there is more than one \( x \)-interce, with commas. Fintercept(s) and the vertex of a parabola vertex:
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Mind Expander
To find the \( x \)-intercepts of the parabola \( y = x^{2} - 6x + 5 \), set \( y = 0 \): \[ 0 = x^{2} - 6x + 5 \] Factoring, we get: \[ 0 = (x - 1)(x - 5) \] Thus, the \( x \)-intercepts are \( x = 1 \) and \( x = 5 \). To find the vertex, use the formula \( x = -\frac{b}{2a} \) where \( a = 1 \) and \( b = -6 \): \[ x = -\frac{-6}{2(1)} = 3 \] Now, substitute \( x = 3 \) back into the original equation to find \( y \): \[ y = 3^{2} - 6(3) + 5 = 9 - 18 + 5 = -4 \] So, the vertex is at \( (3, -4) \). Coordinates of the \( x \)-intercepts: \( 1, 5 \); vertex: \( (3, -4) \).
preguntas relacionadas
![](/pmw/img-try-permium.webp)