Pregunta
upstudy study bank question image url

SAT scores: A college admissions officer takes a simple random sample of 100 entering freshmen and computes their mean mathematics SAT score to be 452. Assume the population standard deviation is \( \sigma=115 \). Part: \( 0 / 4 \) Part 1 of 4 (a) Construct a \( 95 \% \) confidence interval for the mean mathematics SAT score for the entering freshman class. Round the answer to the nearest whole number. A \( 95 \% \) confidence interval for the mean mathematics SAT score is \( 429<\mu<475 \). Part: \( 1 / 4 \) Part 2 of 4 (b) If the sample size were 110 rather than 100, would the margin of error be larger or smaller than the result in part (a)? Explain. The margin of error would be \( \square \) smaller , since \( \square \) an increase in the sample size will \( \square \) decrease the standard error. Part: \( 2 / 4 \) Part 3 of 4 (c) If the confidence level were \( 80 \% \) rather than \( 95 \% \), would the margin of error be larger or smaller than the result in part (a)? Explain. The margin of error would be \( \square \) (Choose one) \( \bar{V} \), since (Choose one) in the confidence level will \( \square \) (Choose one) the critical value \( z_{\alpha / 2} \). larger smaller \( \square \) \( \square \)

Ask by Elliott Cummings. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part (a):** The 95% confidence interval for the mean mathematics SAT score is 429 < μ < 475. **Part (b):** The margin of error would be smaller, since an increase in the sample size decreases the standard error. **Part (c):** The margin of error would be smaller, since a decrease in the confidence level decreases the critical value \( z_{\alpha/2} \).

Solución

Let's go through each part of the problem step by step. ### Part 1 of 4 (a) To construct a \( 95\% \) confidence interval for the mean mathematics SAT score, we can use the formula for the confidence interval: \[ \text{CI} = \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \] Where: - \(\bar{x} = 452\) (sample mean) - \(\sigma = 115\) (population standard deviation) - \(n = 100\) (sample size) - \(z_{\alpha/2}\) is the critical value for a \(95\%\) confidence level. For a \(95\%\) confidence level, \(z_{\alpha/2} \approx 1.96\). Now, we can calculate the standard error (SE): \[ \text{SE} = \frac{\sigma}{\sqrt{n}} = \frac{115}{\sqrt{100}} = \frac{115}{10} = 11.5 \] Next, we calculate the margin of error (ME): \[ \text{ME} = z_{\alpha/2} \cdot \text{SE} = 1.96 \cdot 11.5 \] Now, let's calculate the margin of error. ### Part 2 of 4 (b) If the sample size were \(110\) rather than \(100\), we can analyze the effect on the margin of error. The new standard error would be: \[ \text{SE}_{new} = \frac{\sigma}{\sqrt{n_{new}}} = \frac{115}{\sqrt{110}} \] Since the sample size increases, the standard error will decrease, leading to a smaller margin of error. Thus, the margin of error would be **smaller**, since an increase in the sample size will **decrease** the standard error. ### Part 3 of 4 (c) If the confidence level were \(80\%\) rather than \(95\%\), we need to consider the critical value \(z_{\alpha/2}\) for \(80\%\). The critical value for \(80\%\) is approximately \(1.28\). Since the critical value decreases when the confidence level decreases, the margin of error would be **smaller**, since a decrease in the confidence level will **decrease** the critical value \(z_{\alpha/2}\). Now, let's calculate the margin of error for part (a) and finalize the answers. #### Calculating the Margin of Error for Part (a) \[ \text{ME} = 1.96 \cdot 11.5 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(1.96\times 11.5\) - step1: Multiply the numbers: \(22.54\) The margin of error (ME) calculated is approximately \( 22.54 \). Now, we can construct the confidence interval: \[ \text{CI} = \bar{x} \pm \text{ME} = 452 \pm 22.54 \] Calculating the lower and upper bounds: - Lower bound: \( 452 - 22.54 \approx 429.46 \) - Upper bound: \( 452 + 22.54 \approx 474.54 \) Rounding to the nearest whole number, we have: \[ 429 < \mu < 475 \] ### Final Answers: 1. **Part (a)**: The \( 95\% \) confidence interval for the mean mathematics SAT score is \( 429 < \mu < 475 \). 2. **Part (b)**: The margin of error would be **smaller**, since an increase in the sample size will **decrease** the standard error. 3. **Part (c)**: The margin of error would be **smaller**, since a decrease in the confidence level will **decrease** the critical value \( z_{\alpha/2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Building on your understanding of confidence intervals, it's intriguing to note that the concept of confidence intervals dates back to the early 20th century. The idea was popularized by statisticians like Jerzy Neyman, who formalized the approach in 1934, enabling researchers to quantify the uncertainty in their estimates and make informed decisions based on statistical evidence! When considering the impact of sample size on the margin of error, remember that larger samples yield more reliable estimates. To visualize this, imagine you’re trying to capture a photograph of a distant mountain. With a larger lens (sample size), your image gets clearer (lower margin of error), while a smaller lens can lead to blurriness (higher margin of error). This is why researchers always recommend larger samples when looking to achieve greater precision!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad