Pregunta
upstudy study bank question image url

(a) If a wheel of a bus has diameter 84 cm , find the distance covered by the bus in 12 revolutions. (b) A boy is running along the circumference of a circular track whose radius is 35 m . Find the distance covered by him to complete four rounds. A wheel of a van is making 400 revolutions per minute. If the diameter of the wheel is 70 cm find its speed. ANSWERS \( \begin{array}{llllll}\text { (c) Semicircle } & \text { (b) Minor sector } & \text { (c) Minor segment } & \text { 2. to 3. Show to your teacher. } \\ \begin{array}{lllll}\text { (a) } \\ \text { (a) radius } & \text { (b) chord } & \text { (c) diameter } & \text { (d) minor arc } & \text { (e) major a } \\ \text { (f) semicircle } & \text { 5. } & \text { a, c, d, e,f } & \text { 6. } & \text { (a) Yes }\end{array} & \text { (b) Yes }\end{array} \)

Ask by Burton Hill. in Nepal
Nov 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) 3165.12 cm (b) 879.2 m (c) 879.2 m/min

Solución

Let's solve each part of the problem step by step. ### (a) Distance covered by the bus in 12 revolutions 1. **Find the radius of the wheel:** \[ \text{Diameter} = 84 \text{ cm} \implies \text{Radius} = \frac{84}{2} = 42 \text{ cm} \] 2. **Calculate the circumference of the wheel:** \[ \text{Circumference} = 2 \pi r = 2 \pi \times 42 \text{ cm} \approx 2 \times 3.14 \times 42 \approx 263.76 \text{ cm} \] 3. **Calculate the distance covered in 12 revolutions:** \[ \text{Distance} = \text{Circumference} \times \text{Number of Revolutions} = 263.76 \text{ cm} \times 12 \approx 3165.12 \text{ cm} \] Thus, the distance covered by the bus in 12 revolutions is approximately **3165.12 cm**. ### (b) Distance covered by the boy to complete four rounds 1. **Find the circumference of the circular track:** \[ \text{Radius} = 35 \text{ m} \implies \text{Circumference} = 2 \pi r = 2 \pi \times 35 \text{ m} \approx 2 \times 3.14 \times 35 \approx 219.8 \text{ m} \] 2. **Calculate the distance covered in four rounds:** \[ \text{Distance} = \text{Circumference} \times \text{Number of Rounds} = 219.8 \text{ m} \times 4 \approx 879.2 \text{ m} \] Thus, the distance covered by the boy to complete four rounds is approximately **879.2 m**. ### (c) Speed of the van 1. **Find the radius of the wheel:** \[ \text{Diameter} = 70 \text{ cm} \implies \text{Radius} = \frac{70}{2} = 35 \text{ cm} \] 2. **Calculate the circumference of the wheel:** \[ \text{Circumference} = 2 \pi r = 2 \pi \times 35 \text{ cm} \approx 2 \times 3.14 \times 35 \approx 219.8 \text{ cm} \] 3. **Calculate the distance covered in one minute (400 revolutions):** \[ \text{Distance in one minute} = \text{Circumference} \times \text{Number of Revolutions} = 219.8 \text{ cm} \times 400 \approx 87920 \text{ cm} \] 4. **Convert the distance to meters:** \[ 87920 \text{ cm} = \frac{87920}{100} = 879.2 \text{ m} \] 5. **Calculate the speed in meters per minute:** The speed of the van is **879.2 m/min**. To summarize: - (a) Distance covered by the bus in 12 revolutions: **3165.12 cm** - (b) Distance covered by the boy to complete four rounds: **879.2 m** - (c) Speed of the van: **879.2 m/min**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the concept of circular motion has been around since ancient times? The Greeks and later astronomers employed the idea of wheels and orbits to describe planetary movement. Archimedes famously studied the geometry of circles, laying the groundwork for understanding circumference, which still helps us compute distances traveled by wheels today! On a practical note, understanding how to calculate the circumference of circles is vital for many real-world applications, like engineering and automotive design. For instance, when considering the wheel's revolutions, the precise calculation of speed and distance covered can directly influence vehicle performance and efficiency. So, whether you're designing a new bike or optimizing a bus route, these principles come in handy!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad